
Draf
t

​
Security Assessment
Final Report

Silo - Kink Model

September-October 2025

Prepared for Silo Team

 ​ ​ ​ ​ ​ ​ ​

Table of Contents
Project Summary...3

Project Scope.. 3
Project Overview... 3

Protocol Overview... 3
Findings Summary.. 4
Severity Matrix...4

Detailed Findings.. 5
Audit Goals.. 6
Coverage and Conclusions..7

Medium Severity Issues..8
M-01 New config will be applied retroactively... 8
M-02 k is not adjusted when there is no debt..10
Low Severity Issues.. 11
L-01 verifyConfig() does not validate u1 and u2 against ulow and ucrit.. 11
Informational Issues... 13
I-01. _create() does not verify the silo address and the immutableArgs... 13
I-02. Invalid DynamicKinkModel contracts can be deployed by the factory.. 14
I-03. Interest can be underestimated during long periods of inactivity.. 15
I-04. Whitepaper accuracy can be improved...16
I-05. Whitepaper inconsistency... 17

Disclaimer.. 19
About Certora.. 19

​ 2

 ​ ​ ​ ​ ​ ​ ​

Project Summary
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Initial Commit Hash

Silo - Kink
Model

Repo 8e87c7da21 f12498e302

​
Project Overview

This describes the manual code review findings for the Silo - Kink Model project. The work was
undertaken from September 29th to October 6th.

The following contract list is included in our scope:

-​ contracts/interestRateModel/kink/DynamicKinkModel.sol
-​ contracts/interestRateModel/kink/DynamicKinkModelConfig.sol
-​ contracts/interestRateModel/kink/DynamicKinkModelFactory.sol
-​ contracts/lib/KinkMath.sol
-​ contracts/interfaces/IDynamicKinkModel.sol
-​ contracts/interfaces/IDynamicKinkModelConfig.sol
-​ contracts/interfaces/IDynamicKinkModelFactory.sol

The team performed a manual audit of all the Solidity contracts in scope. During the manual audit, the
Certora team discovered bugs in the Solidity contracts code, as listed on the following page.

Protocol Overview

The audit focused on evaluating the smart contracts implementing the Dynamic Kink Model, a
newly introduced interest rate mechanism designed to adapt to changing market conditions.
This model dynamically adjusts the interest rate slope parameter k based on the system’s
utilization level, increasing or decreasing it depending on whether the utilization falls above or
below a defined optimal interval [u1, u2].

​ 3

https://github.com/silo-finance/silo-contracts-v2/
https://github.com/silo-finance/silo-contracts-v2/tree/8e87c7da215f4403e0c0a0c85c853788a94540a5
https://github.com/silo-finance/silo-contracts-v2/tree/f12498e30241065b30dcb1280a5c120be43a138b

 ​ ​ ​ ​ ​ ​ ​

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical - - -

High - - -

Medium 2 2 1

Low 1 1 0

Informational 5 5 2

Total 8 8 3

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

​ 4

 ​ ​ ​ ​ ​ ​ ​

Detailed Findings

ID Title Severity Status

M-01 New config will be applied
retroactively

Medium Acknowledged

M-02 K is not adjusted when there is
no debt

Medium Fix confirmed.

L-01 verifyConfig() does not validate
u1 and u2 against ulow and ucrit

Low Acknowledged

​ 5

 ​ ​ ​ ​ ​ ​ ​

Audit Goals
1.​ Whitepaper correctness

a.​ Verify that the mathematics in the whitepaper are correct, that there are no
mathematical mistakes.

2.​ Whitepaper corresponds to code
a.​ Ensure the pseudo-code in the whitepaper matches the calculations described in

the whitepaper.
i.​ Ensure slope (k) only changes when the utilization is outside the optimal

interval, and in the correct direction.
b.​ Verify the solidity code matches the whitepaper’s pseudo-code.
c.​ Ensure limits set by the whitepaper are enforced in the code, including both

numerical limits and limits between configurable parameters.
3.​ Integration correctness

a.​ Ensure the integration with the rest of the Silo protocol is correct.
b.​ Ensure the DynamicKinkModel contract correctly implements the

IInterestRateModel interface (despite not inheriting from it).
c.​ Ensure configuration updates are handled correctly.

​ 6

 ​ ​ ​ ​ ​ ​ ​

Coverage and Conclusions
1.​ Whitepaper correctness

a.​ The whitepaper's mathematics are correct. After the fixes in I-04, I-05 the
whitepaper is very clear.

2.​ Whitepaper corresponds to code
a.​ The whitepaper’s pseudocode matches the descriptions given in the whitepaper

(after fixing I-05). This includes correctly changing the slope (after fixing the edge
case described in M-02).

b.​ It has been verified that the solidity code matches the pseudo-code (including all
three math-heavy functions, i.e., currentInterestRate, compoundInterestRate,
generateConfig).

c.​ Limits set by the whitepaper are properly enforced, with the exception of L-01
(some optimal interval limits apply only to user-friendly configs).

3.​ Integration correctness
a.​ The new interest rate model correctly integrates with the rest of the Silo protocol.

Additional safeguards have been suggested in I-01, I-02 to minimize the potential
for configuration mistakes during deployment.

b.​ It has been verified that the DynamicKinkModel contract correctly implements the
IInterestRateModel interface.

c.​ Problems with configuration updates, including possible deployment-time
mitigations, have been described in M-01.

​ 7

JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​

Medium Severity Issues

M-01 New config will be applied retroactively

Severity: Medium Impact: Medium Likelihood: Medium

Files:
DynamicKinkModel.sol

Status: Acknowledged

Description: When _getCompoundInterestRate() is invoked, it will fetch the ModelState and the
config using the following function:

 function getModelStateAndConfig(bool _usePending)
 public
 view
 virtual
 returns (ModelState memory state, Config memory config, ImmutableConfig memory
immutableConfig)
 {
 ...
 irmConfigToUse = irmConfig();
 state = modelState();
 }

Both irmConfig() and modelState() return values relative to the current block timestamp. The
configuration (irmConfig) only updates after the activateConfigAt timestamp is reached:​

 ​
function irmConfig() public view returns (IDynamicKinkModelConfig config) {
 config = pendingConfigExists() ? configsHistory[_irmConfig].irmConfig : _irmConfig;
 }

​ 8

https://github.com/silo-finance/silo-contracts-v2/blob/f12498e30241065b30dcb1280a5c120be43a138b/silo-core/contracts/interestRateModel/kink/DynamicKinkModel.sol#L191

 ​ ​ ​ ​ ​ ​ ​

function pendingConfigExists() public view returns (bool) {
 return activateConfigAt > block.timestamp;
 }

However, the interest rate computation spans the entire period between
_interestRateTimestamp and block.timestamp, which may overlap both the old and new
configurations. Despite this overlap, the function applies only the new configuration retroactively
across the entire period — effectively ignoring the old configuration for the portion of time
before activateConfigAt.

Recommendations: In order to avoid retroactive parameter application, consider computing the
interest piecewise across configuration boundaries, applying the appropriate parameters for
each interval.

Customer’s response: Acknowledged, design choice.

Note: When deploying new configurations, deployers and users should be aware of this. We
suggest making sure the state was updated recently (and even within the same timestamp, if
possible) before updating to a new configuration.

​ 9

JavaScript

 ​ ​ ​ ​ ​ ​ ​

M-02 k is not adjusted when there is no debt

Severity: Medium Impact: Medium Likelihood: Medium

Files:
DynamicKinkModel.sol

Status: Fix confirmed.

Description: If there is no debt, the compoundInterestRate function will return the following:

// no debt, no interest, overriding min APR
 if (_tba == 0) return (0, _state.k);

​
However, there could be extreme cases in which the debt was decreased instantly after k had
reached the kmax value. As a result, the maximum kink will still be preserved even though the
utilization is 0.

Recommendations: Consider adjusting k when the utilization is 0, either according to the
formula or directly reset to kmin (as this is an extreme edge case).

Customer’s response: Fixed in PR-1664

Fix Review: Fix confirmed.

​ 10

https://github.com/silo-finance/silo-contracts-v2/blob/f12498e30241065b30dcb1280a5c120be43a138b/silo-core/contracts/interestRateModel/kink/DynamicKinkModel.sol#L324
https://github.com/silo-finance/silo-contracts-v2/pull/1664/files

JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​

Low Severity Issues

L-01 verifyConfig() does not validate u1 and u2 against ulow and ucrit

Severity: Low Impact: Low Likelihood: Low

Files:
DynamicKinkModel.sol

Status: Acknowledged

Description: generateConfig() performs the following validations:

// 0 <= ulow < u1 < u2 < ucrit < DP
 require(defaultInt.u1.inOpenInterval(defaultInt.ulow, defaultInt.u2),
IDynamicKinkModel.InvalidU1());
 require(defaultInt.u2.inOpenInterval(defaultInt.u1, defaultInt.ucrit),
IDynamicKinkModel.InvalidU2());
 require(defaultInt.ucrit.inOpenInterval(defaultInt.u2, DP),
IDynamicKinkModel.InvalidUcrit());

However, in verifyConfig() there are no checks to ensure that u1 and u2 are between ulow and
ucrit:​

require(_config.ulow.inClosedInterval(0, _DP), InvalidUlow());
require(_config.u1.inClosedInterval(0, _DP), InvalidU1());
require(_config.u2.inClosedInterval(_config.u1, _DP), InvalidU2());
require(_config.ucrit.inClosedInterval(_config.ulow, _DP), InvalidUcrit());

As a result, an incorrect configuration can be created.

​ 11

 ​ ​ ​ ​ ​ ​ ​

Recommendations: Consider adding the additional validations into verifyConfig(), in order to
ensure that u1 and u2 are between ulow and ucrit.

Customer’s response: Acknowledged - design choice to allow more flexibility for the
configurations.

​ 12

JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​

Informational Issues

I-01. _create() does not verify the silo address and the immutableArgs

Description: _create() will perform some initial validations to ensure that initialization will not
revert:

function _create(
 IDynamicKinkModel.Config memory _config,
 IDynamicKinkModel.ImmutableArgs memory _immutableArgs,
 address _initialOwner,
 address _silo,
 bytes32 _externalSalt
) internal virtual returns (IDynamicKinkModel irm) {
 IRM.verifyConfig(_config);

However, it will not perform the following checks, which are done in the initialize function:​

require(_silo != address(0), EmptySilo());
require(_immutableArgs.timelock <= MAX_TIMELOCK, InvalidTimelock());
require(_immutableArgs.rcompCap > 0, InvalidRcompCap());
require(_immutableArgs.rcompCap <= RCUR_CAP, InvalidRcompCap());

As a result, the _create function will not revert early as intended.

Recommendation: Consider adding the additional validations in the beginning of _create.

Customer’s response: Acknowledged, design choice.

​ 13

JavaScript

 ​ ​ ​ ​ ​ ​ ​

I-02. Invalid DynamicKinkModel contracts can be deployed by the factory

Description: _getCompoundInterestRate() and _getCurrentInterestRate() will both perform the
following external call:

 ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();

​
However, DynamicKinkModel::initialize() and the factory do not check if the specified _silo
address will successfully execute this function. As a result, the factory may deploy broken
DynamicKinkModel contracts.

Recommendation: Consider checking if the utilizationData() call is successful during
initialization or in _create().

Customer’s response: Acknowledged — this is a design limitation. The Silo contract is created
(cloned) after the Interest Rate Model (IRM) is deployed, so when the IRM is initialized with the
Silo’s address, the Silo does not yet exist.

​
​
​
​

​ 14

 ​ ​ ​ ​ ​ ​ ​

I-03. Interest can be underestimated during long periods of inactivity

Description: The DynamicKinkModel compounds interest continuously on a per-second basis,
which incrementally increases the borrowed amount. Consequently, utilization naturally rises
over time as compounding progresses. However, the current implementation assumes that
utilization remains constant between _t0 and _t1, leading to a slight underestimation of the
compounded interest. Although this deviation is generally minor, it can become more significant
depending on the configuration parameters and the duration of inactivity.

Recommendation: Consider either documenting this behavior to acknowledge the expected
underestimation (currently the utilization rate remaining constant for the calculation is
documented as an assumption, and not as an underestimation), or introducing a mechanism to
periodically update or re-evaluate the interest rate during periods of low user activity.

Customer’s response: Acknowledged. This is a known problem in lending protocols, and will not
be fixed.

​ 15

 ​ ​ ​ ​ ​ ​ ​

I-04. Whitepaper accuracy can be improved

Description: According to the whitepaper:​
“If utilization is above ucrit, the slope changes from k to αk, where α ⩾ 0 is a
high factor.”​
However, in the implementation, the actual slope applied is (1 + α) × k, aligning with the formal
definition provided in the static model.

Recommendation: Consider updating the whitepaper to describe the formula more accurately.

Customer’s response: Fixed in PR-1675.

Fix Review: Fix confirmed.

​ 16

https://github.com/silo-finance/silo-contracts-v2/pull/1675

JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​

I-05. Whitepaper inconsistency

Description: In the “How do we calculate the compound interest in practice?” section, the
integral calculations are shown using a r, which is the interest per second, while in the code the
slope state is calculated using the kink and later multiplying by the utilization factor:​

if (_l.k1 > _cfg.kmax) {
 _l.x = _cfg.kmax * _l.T - (_cfg.kmax - k) ** 2 / (2 * _l.roc);
 k = _cfg.kmax;
 } else if (_l.k1 < _cfg.kmin) {
 _l.x = _cfg.kmin * _l.T - (k - _cfg.kmin) ** 2 / (2 * _l.roc);
 k = _cfg.kmin;
 } else {
 _l.x = (k + _l.k1) * _l.T / 2;
 k = _l.k1;
 }
if (_u >= _cfg.ulow) {
 _l.f = _u - _cfg.ulow;

 if (_u >= _cfg.ucrit) {
 _l.f = _l.f + _cfg.alpha * (_u - _cfg.ucrit) / _DP;
 }
 }
 _l.x = _cfg.rmin * _l.T + _l.f * _l.x / _DP;

Furthermore, due to the use of a negative roc, the following code will perform a subtraction,
instead of addition which was mentioned in the whitepaper:​

 } else if (_l.k1 < _cfg.kmin) {
 _l.x = _cfg.kmin * _l.T - (k - _cfg.kmin) ** 2 / (2 * _l.roc);
 k = _cfg.kmin;

​
In addition, the whitepaper could be made clearer and more consistent by explicitly defining all
variables (e.g., k_lin, k_i) and by clearly stating that the presented derivation refers to the

​ 17

 ​ ​ ​ ​ ​ ​ ​

decreasing slope case. It would also be beneficial to provide a separate explanation for the
increasing slope case.

Recommendation: Consider including detailed NatSpec documentation explaining how the code
translates the theoretical equations from the whitepaper and improving the whitepaper.

Customer’s response: Fixed in PR-1675.

Fix Review: Fix confirmed.

​ 18

https://github.com/silo-finance/silo-contracts-v2/pull/1675

 ​ ​ ​ ​ ​ ​ ​

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

​ 19

	​
	Security Assessment
	Final Report
	Project Summary
	Project Scope
	​Project Overview
	Protocol Overview

	Findings Summary
	Severity Matrix

	Detailed Findings
	
	

	Audit Goals
	Coverage and Conclusions
	
	Medium Severity Issues
	M-01 New config will be applied retroactively
	
	M-02 k is not adjusted when there is no debt
	Low Severity Issues
	L-01 verifyConfig() does not validate u1 and u2 against ulow and ucrit
	Informational Issues
	I-01. _create() does not verify the silo address and the immutableArgs
	I-02. Invalid DynamicKinkModel contracts can be deployed by the factory
	I-03. Interest can be underestimated during long periods of inactivity
	
	I-04. Whitepaper accuracy can be improved
	I-05. Whitepaper inconsistency

	Disclaimer
	
	
	About Certora

