
Silo Finance

Silo Core
Security Assessment Report

Version: 2.0

April, 2025

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6NFTs Minted By SiloFactory Can Be Burned By Any User . 7Time Based Multiplier Can Grow With Little Impact . 8
LiquidationHelper May Accumulate Dust Which Can Be Stolen 10Bad Debt Accrues Interest In Silo . 12Potential Unwanted Result Upon Out-Of-Range Input . 13Pragma Solidity Version Range Allows Breaking Changes . 14Unnecessary Write Operations In _createOracles() . 15No Emergency Pause Mechanism For Critical Silo Operations 17Miscellaneous General Comments . 18

A Test Suite 22

B Vulnerability Severity Classification 23

1

Silo Core Introduction

Introduction

Sigma Primewas commercially engaged to perform a time-boxed security review of the Silo Finance components.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the components in scope. Sigma Prime makes nojudgements on, or provides any security review, regarding the underlying business model or the individualsinvolved in the project.

Document Structure

The first section provides an overview of the functionality of the Silo Finance components contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Silo Finance components in scope.

Overview

Silo is a risk-isolated lending market that allows users to deposit tokens to earn interest, or to use them ascollateral to then borrow other tokens.
Silo Core comprises of the main smart contracts of the protocol, implementing lending logic, managing andisolating risk, and acting as a vault for assets.

Page | 2

Silo Core Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the Silo Finance repository.
The scope of this time-boxed reviewwas strictly limited to the following files and directories at commit 6631f79.
The fixes of the identified issues were assessed at commit 8def80e.

1. Silo.sol

2. SiloConfig.sol

3. SiloDeployer.sol

4. SiloFactory.sol

5. SiloLens.sol

6. interestRateModel/*

7. lib/*

8. liquidation/*

9. utils/*

Note: third party libraries and dependencies were excluded from the scope of this assessment.

Approach

The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support the Solidity component of the review, the testing team also utilised the following automated testingtools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Aderyn: https://github.com/Cyfrin/aderyn

Output for these automated tools is available upon request.
Page | 3

https://github.com/silo-finance
https://github.com/silo-finance/silo-contracts-v2/commit/6631f7900ef3f3a8cc397c79203e7a3da785ca46
https://github.com/silo-finance/silo-contracts-v2/commit/8def80e3d9c3cc2a9f5401e5888abdbc95cb46d0
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/Cyfrin/aderyn

Silo Core Coverage Limitations

Coverage Limitations

Due to the time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 9 issues during this assessment. Categorised by their severity:
• Medium: 2 issues.
• Low: 2 issues.
• Informational: 5 issues.

Page | 4

Silo Core Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Silo Finance componentsin scope. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
SILO-01 NFTs Minted By SiloFactory Can Be Burned By Any User Medium Resolved

SILO-02 Time Based Multiplier Can Grow With Little Impact Medium Closed

SILO-03 LiquidationHelper May Accumulate Dust Which Can Be Stolen Low Closed

SILO-04 Bad Debt Accrues Interest In Silo Low Closed

SILO-05 Potential Unwanted Result Upon Out-Of-Range Input Informational Closed

SILO-06 Pragma Solidity Version Range Allows Breaking Changes Informational Resolved

SILO-07 Unnecessary Write Operations In _createOracles() Informational Resolved

SILO-08 No Emergency Pause Mechanism For Critical Silo Operations Informational Closed

SILO-09 Miscellaneous General Comments Informational Resolved

6

Silo Core Detailed Findings

SILO-01 NFTs Minted By SiloFactory Can Be Burned By Any User
Asset SiloFactory.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The burn() function lacks access control, allowing anyone to burn deployer NFT tokens, resulting in Silo fees beingredirected from the deployer to Silo DAO.
When SiloFactory creates a Silo marketplace, it mints an ERC721 NFT token to the deployer. The owner of this NFTis the recipient of Silo fees. The NFT can be burned to redirect all Silo fees to the Silo DAO.
Anyone can call SiloFactory.burn() function to burn the NFT:
function burn(uint256 _siloIdToBurn) external virtual {

_burn(_siloIdToBurn);
}

Note, since the Silo DAO is the recipient of the funds, it has the ability to redirect them back to the deployers in anunlikely event of an exploit. Given the low probability of the entire DAO being compromised or acting maliciously,along with the absence of economic incentives for an attacker of carrying out such attack, the overall severity ratingof this finding is reduced.

Recommendations

Add access control checks to SiloFactory.burn() ensuring that only the token owner can call it.

Resolution

As of commit 8def80e, access controls have been added to the burn() function:
require(msg.sender == _ownerOf(_siloIdToBurn), NotYourSilo());

Page | 7

https://github.com/silo-finance/silo-contracts-v2/commit/8def80e3d9c3cc2a9f5401e5888abdbc95cb46d0

Silo Core Detailed Findings

SILO-02 Time Based Multiplier Can Grow With Little Impact
Asset InterestRateModelV2.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

It is possible to build up Tcrit , a time based multiplier of the interest rate, at just above the critical rate withoutincurring punitive interest. Subsequent borrowing will then be an order of magnitude more expensive, despite twoalmost identical borrowing patterns.
The issue occurs because the value of Tcrit builds up over time based on whether the utilisation rate of the vaultis above or below the fixed threshold ucrit . However, the impact of being above ucrit is proportionate to thedifference between ucrit and u , the utilisation rate, as seen on line [312]:
_l.rp = _c.kcrit * (decimalPoints + Tcrit) / decimalPoints * (_l.u - _c.ucrit) / decimalPoints;

In this code, _l.u is the utilisation rate and _c.ucrit is the ucrit threshold.
However, the impact of _l.u being above or below _c.ucrit is far more pronounced on the value of Tcrit , the timebased interest multiplier. It either increases or decreases depending on this one condition:
Tcrit = Tcrit + _c.beta * _l.T;

Tcrit = _max(0, Tcrit - _c.beta * _l.T);

Because of theminimal impact on interest but high impact on Tcrit , it is possible for the utilisation rate to stay just overthe ucrit threshold with no significant impact on the interest charged. If the utilisation rate then sharply increases,the difference in the interest charged can be as high as an order of magnitude. This is because of the expression
(decimalPoints + Tcrit) which would now be a very high number but was previously low impact because of the low
value of the expression (_l.u -_c.ucrit) .
It is unlikely (although not impossible) that this would be exploited by an attacker, but it could lead to unexpectedlyhigh interest rate surges, possibly leading to surprising and unpredictable liquidations.

Recommendations

This issue could be addressed in the user interface bymaking clearwhen Tcrit is at a high value andwarning borrowersof this fact, however, this would not protect borrowers in a situation where the sudden increase in utilisation is due toa withdrawal.
Consider increasing or decreasing Tcrit by an amount that scales with the level above ucrit that the utilisation rateis at. For example:
Tcrit = Tcrit + _c.beta * _l.T * (_l.u - _c.ucrit);

Page | 8

Silo Core Detailed Findings

Resolution

The development team acknowledged the issue and resolved no code changes were required at this time, although thecalculation of Tcrit may be updated in future in a manner similar to that recommended.

Page | 9

Silo Core Detailed Findings

SILO-03 LiquidationHelper May Accumulate Dust Which Can Be Stolen
Asset LiquidationHelper.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The onFlashLoan() function has no access control, as a result, it is possible for an attacker to steal dust that hasaccumulated within the contract.
The only liquidation scenario that is currently supported is liquidations involving the external swap of collateral to debtusing a decentralised exchange (DEX).
For swaps involving large amounts, dust can accumulate to a meaningful value, especially over multiple transactions. Ifmultiple liquidation events occur for the collateral asset to debt asset before a liquidation event in the opposite position,this accumulated dust will not be recovered and will remain in the contract’s balance.
This is particularly likely if there are more loans for the debt asset compared to the collateral asset within the silo. Theaccumulated dust of the collateral asset can then be stolen by an attacker as follows:

• The attacker calls onFlashLoan() directly, passing the address of the collateral asset (which has accumulated
dust) for the _debtAsset parameter. The attacker also ensures that the values for _maxDebtToCover and _fee
add up to the total dust amount. The _data parameter will contain a malicious value for _liquidation.hook .

function onFlashLoan(
address /* _initiator */,
address _debtAsset,
uint256 _maxDebtToCover,
uint256 _fee,
bytes calldata _data

)
external
returns (bytes32)

• The execution of _liquidation.hook.liquidationCall() on line [92] would call a malicious contract that simply
returns random values for _withdrawCollateral and _repayDebtAssets . These variables are not used within thefunction so the values are irrelevant.

(
_withdrawCollateral, _repayDebtAssets

) = _liquidation.hook.liquidationCall({
_collateralAsset: _liquidation.collateralAsset,
_debtAsset: _debtAsset,
_user: _liquidation.user,
_maxDebtToCover: _maxDebtToCover,
_receiveSToken: false

});

Page | 10

Silo Core Detailed Findings

• On line [101] flashLoanWithFee will be equal to _maxDebtToCover + _fee , which is not just the value of theaccumulated dust amount, but also the contract’s balance for the collateral token.

uint256 flashLoanWithFee = _maxDebtToCover + _fee;

• The attacker sets _liquidation.collateralAsset equal to the _debtAsset parameter which is the collateral
token. This ensures that the if statement on line [103] executes instead of the else statement, ensuring thata swap operation does not take place. The balance variable will return the contract’s balance for the collateral
token, which is also equal to flashLoanWithFee . This will result in the _transferToReceiver() operation passing
zero, which ensures that TOKENS_RECEIVER does not collect any tokens.

if (_liquidation.collateralAsset == _debtAsset) {
uint256 balance = IERC20(_liquidation.collateralAsset).balanceOf(address(this));
// bad debt is not supported, we will get underflow on bad debt
_transferToReceiver(_liquidation.collateralAsset, balance - flashLoanWithFee);

}

• Finally, on line [123] the contract grants approval to the attacker for flashLoanWithFee , thus allowing them toremove the accumulated dust amount from the contract’s balance.
IERC20(_debtAsset).approve(msg.sender, flashLoanWithFee);

Recommendations

To address this, the function needs to implement access control to ensure that only the flash loan lender is able to callit.
This can be done by creating a transient variable to store the address of the flash loan lender using the flashLoanFrom
parameter in executeLiquidation() . This variable could then be used to verify that msg.sender is the intended caller.This follows the EIP-3156 flash loan specification for the borrower contract implementation to ensure access control.
To ensure safety, the executeLiquidation() function would also have to be updated. This is because this function
allows the caller to pass in the value for _flashLoanFrom which could point to a malicious contract. This maliciouscontract would pass the access control checks recommended here and execute the attack mentioned earlier.
As a result, since the flash loan lender is the silo, the executeLiquidation() function should restrict the _flashLoanFrom

parameter to the addresses of the silo. Thiswill ensure that only a legitimate flash loan lender can call the onFlashLoan()function.

Resolution

The development team pointed out that this contract is not part of the main protocol and as such will have limitedutilisation. Additionally, there may be a revised version available with a dust rescue function.

Page | 11

https://eips.ethereum.org/EIPS/eip-3156#flash-borrower-reference-implementation

Silo Core Detailed Findings

SILO-04 Bad Debt Accrues Interest In Silo
Asset SiloLendingLib.sol, PartialLiquidationLib.sol
Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

In the Silo design, bad debt is not socialised among collateral providers. Liquidators are not guaranteed to repay thebad debt as there is no incentive for them to fully cover it.
However, bad debt within the Silo accrues interest over time, further increasing its value. As utilization rates rise,interest rates also increase, compounding the bad debt. In markets with high utilisation, the rate of compoundingaccelerates even more, increasing the problem. Over time, this could cause both the bad debt and market utilization toreach extremely high levels.

Recommendations

Address bad debt through separate accounting and modify the interest calculation logic to prevent interest from ac-cruing on bad debt.

Resolution

The development team acknowledged the issue and resolved no code changes were required at this time.

Page | 12

Silo Core Detailed Findings

SILO-05 Potential Unwanted Result Upon Out-Of-Range Input
Asset Hook.sol

Status Closed: See Resolution
Rating Informational

Description

The function shareTokenTransfer() accepts an arbitrary uint256 value as an input (_tokenType). This can result in
unintended behavior if _tokenType > 2 .

Recommendations

The testing team understands that this unusual pattern may be intentional to accommodate
IShareToken.HookSetup.tokenType . However, since the token type is known beforehand, it would be more reli-
able to use a type such as ISilo.AssetType to prevent incorrect calculations.

Resolution

The development team acknowledged the issue and resolved no code changes were required at this time.

Page | 13

Silo Core Detailed Findings

SILO-06 Pragma Solidity Version Range Allows Breaking Changes
Asset RevertLib.sol

Status Resolved: See Resolution
Rating Informational

Description

The contract RevertLib specifies the pragma range as pragma solidity >=0.7.6 <=0.9.0; . This range includes po-tential breaking changes that could lead to unintended behavior in the contract.

Recommendations

Consider using pragma solidity ^0.8.28 as in other contracts.

Resolution

As of commit 8def80e, the pragma was changed to pragma solidity ^0.8.28 .

Page | 14

https://github.com/silo-finance/silo-contracts-v2/commit/8def80e3d9c3cc2a9f5401e5888abdbc95cb46d0

Silo Core Detailed Findings

SILO-07 Unnecessary Write Operations In _createOracles()

Asset SiloDeployer.sol

Status Resolved: See Resolution
Rating Informational

Description

The _createOracle() function performs unnecessary write operations on _siloInitData as follows:
function _createOracles(ISiloConfig.InitData memory _siloInitData, Oracles memory _oracles) internal {

_siloInitData.solvencyOracle0 = _siloInitData.solvencyOracle0 != address(0)
? _siloInitData.solvencyOracle0
: _createOracle(_oracles.solvencyOracle0);

_siloInitData.maxLtvOracle0 = _siloInitData.maxLtvOracle0 != address(0)
? _siloInitData.maxLtvOracle0
: _createOracle(_oracles.maxLtvOracle0);

_siloInitData.solvencyOracle1 = _siloInitData.solvencyOracle1 != address(0)
? _siloInitData.solvencyOracle1
: _createOracle(_oracles.solvencyOracle1);

_siloInitData.maxLtvOracle1 = _siloInitData.maxLtvOracle1 != address(0)
? _siloInitData.maxLtvOracle1
: _createOracle(_oracles.maxLtvOracle1);

}

Here, _siloInitData.solvencyOracle0 , _siloInitData.maxLtvOracle0 , _siloInitData.solvencyOracle1 , and
_siloInitData.maxLtvOracle1 are written back to themselves if their values are non-zero which is inefficient.
A similar pattern exists for totalCollateralAssets on line [121] of SiloSolvencyLib.sol .

Recommendations

The function could be refactored to reduce this inefficiency if implemented as follows:
function _createOracles(ISiloConfig.InitData memory _siloInitData, Oracles memory _oracles) internal {

if(_siloInitData.solvencyOracle0 == address(0)){
_siloInitData.solvencyOracle0 = _createOracle(_oracles.solvencyOracle0);

}
if(siloInitData.maxLtvOracle0 == address(0)){

siloInitData.maxLtvOracle0 = _createOracle(_oracles.maxLtvOracle0);
}
if(_siloInitData.solvencyOracle1 == address(0)){

_siloInitData.solvencyOracle1 = _createOracle(_oracles.solvencyOracle1);
}
if(siloInitData.maxLtvOracle1 == address(0)){

siloInitData.maxLtvOracle1 = _createOracle(_oracles.maxLtvOracle1);
}

}

Page | 15

Silo Core Detailed Findings

Resolution

As of commit 8def80e, the function was changed to the recommended pattern.

Page | 16

https://github.com/silo-finance/silo-contracts-v2/commit/8def80e3d9c3cc2a9f5401e5888abdbc95cb46d0

Silo Core Detailed Findings

SILO-08 No Emergency Pause Mechanism For Critical Silo Operations
Asset Actions.sol

Status Closed: See Resolution
Rating Informational

Description

Silo is designed to support two assets in the market. Users can provide one asset as collateral to borrow the other.However, the _MAX_LTV0 parameter is immutable. Additionally, there is no pausing mechanism for borrowing or othercritical operations.
If one of the assets in the Silo market gets hacked (similar to the infinite BNB token minting exploit), it takes time forthe actual market value of the token to decrease.
However, attackers can exploit this time lag by minting large amounts of the token and supplying it as collateral in thesilo to borrow all of the other asset in the market, thereby draining it. Once the hacked token's value drops, the protocolwould have significant bad debt and become insolvent.

Recommendations

To prevent such attacks, the vault deployer should have emergency functions to pause borrowing or set the max LTVto 0, thereby avoiding such attacks.

Resolution

The development team acknowledged the issue and resolved no code changes were required at this time.

Page | 17

https://thehackernews.com/2022/10/hackers-steal-100-million.html

Silo Core Detailed Findings

SILO-09 Miscellaneous General Comments
Asset All contracts
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:
1. Possible Zero Address For Immutable Variables

Related Asset(s): LiquidationHelper.sol
The constructor initialises the values of NATIVE_TOKEN , EXCHANGE_PROXY , and TOKENS_RECEIVER . However, thereare no checks to ensure that their respective parameter values are non-zero before assignment, especially sincethey are all immutable.
Consider adding a check to ensure that the parameter values passed by the constructor for each of the afore-mentioned immutable variables are non-zero.

2. TODO Comment In Production Code
Related Asset(s): DexSwap.sol
There is a TODO comment present on line [18] of DexSwap.sol.
Address and remove all TODO comments found in the codebase.

3. Mismatch Between Comment And Code
Related Asset(s): SiloERC4626Lib.sol and DexSwap.sol
In SiloERC4626Lib.sol the comment on line [30] mentions that the deposit limit for the vault is type(uint128).max .
However, the code implementation has this value set to type(uint256).max instead. Also, in DexSwap.sol on
line [31] the comment here mentions that the fillQuote() function must attach ETH equal to the value field
from the API response. This does not appear to be implemented however as the function is not marked payable .
Consider updating the comment to match the actual implementation.

4. Code Consistency
Related Asset(s): SiloConfig.sol
The code on line 103 assigns the value of _configData0.silo to _COLLATERAL_SHARE_TOKEN0 , while
_PROTECTED_COLLATERAL_SHARE_TOKEN0 is assigned the value of _configData0.protectedShareToken .
To improve code consistency, consider assigning the value of _configData0.collateralShareToken
instead of _configData0.silo to _COLLATERAL_SHARE_TOKEN0 . Since _configData0.silo and
_configData0.collateralShareToken have identical values, the result of the operation will remain thesame.
A similar issue occurs on line [125]. Consider applying the same change there for consistency.

5. Missing Parentheses
Related Asset(s): Hook.sol
The code on line [220] is missing parentheses. Parentheses improve readability and ensure correct evaluation.
Consider changing the code to the following:
return (_action & _expectedHook) == _expectedHook;

Page | 18

Silo Core Detailed Findings

6. Lack Of NatSpec Comments
Related Asset(s): Actions.sol
The library Actions does not include NatSpec comments describing the functionalities, inputs, and outputs ofeach function.
Consider adding comprehensive NatSpec comments to this library, as well as other libraries and contracts, toserve as a reference for developers.

7. Unnecessary Use of Parentheses
Related Asset(s): Rounding.sol
The code on lines [8-33] uses parentheses for Math.Rounding.Floor and Math.Rounding.Ceil , which are unnec-essary.
Consider removing the parentheses to simplify the code.

8. Invalid SPDX License
Related Asset(s): ShareCollateralTokenLib.sol
The contract ShareCollateralTokenLib specifies SPDX-License-Identifier: UNLICENSED which is an invalid SPDXlicense.
Consider using a valid SPDX license identifier such as BUSL-1.1 that is used in other contracts.

9. Repetitive Conversion Of Asset Type
Related Asset(s): SiloERC4626Lib.sol
The code on lines 56-68 contains the following repetitive command:
ISilo.AssetType(uint256(_collateralType))

Consider caching the AssetType into a variable as this saves around 100 gas.
A similar issue can also be found on lines [101-120] where ISilo.AssetType(uint256(_args.collateralType)) isrepeated several times.

10. Inaccurate Comparison On Function isBelowMaxLtv()

Related Asset(s): SiloSolvencyLib.sol
The function isBelowMaxLtv() compares the ltv with _collateralConfig.maxLtv using a less then or equal tooperator on line [75].
return ltv <= _collateralConfig.maxLtv;

The code above returns true if ltv == _collateralConfig.maxLtv , which will be inconsistent with the function
name because the ltv is not below maxLtv but equals to maxLtv .
Consider updating the code on line [75] to better reflect the function name.
return ltv < _collateralConfig.maxLtv;

11. Caching Value During Initialisation Phase
Related Asset(s): ShareCollateralToken.sol
The function decimals() performs a computation by calling ShareTokenLib.decimals() and adding the return
value to SiloMathLib._DECIMALS_OFFSET . This process can be optimised by caching the decimals value throughan initialisation function. By doing so, the computation is performed once during initialisation, and the cachedresult can be accessed as needed.
Consider caching the decimals value in an initialisation function to improve gas efficiency.

Page | 19

Silo Core Detailed Findings

12. Potentially Inaccurate hooksBefore

Related Asset(s): GaugeHookReceiver.sol
The calls to _setHookConfig() on lines [65 and 86] assume that hooksBefore has never been configured. How-
ever, this assumption may be incorrect if the setGauge() function is called a second time. Consequently, the
hooksBefore data stored in SiloHookReceiver._setHookConfig() and the emitted variable _hooksBefore couldbe inaccurate.
It is also worth noting that HOOKS_BEFORE_NOT_CONFIGURED is a uint24 , whereas the input _hooksBefore in
SiloHookReceiver._setHookConfig() is a uint256 . This results in a data type mismatch.
To improve data accuracy, retrieve hooksBefore by calling SiloHookReceiver._getHooksBefore() and use it to
replace HOOKS_BEFORE_NOT_CONFIGURED . Additionally, change the data type of the second input parameter in
SiloHookReceiver._setHookConfig() from uint256 to uint24 .

13. Data Type Mismatch
Related Asset(s): SiloHookReceiver.sol
The function _getHooksBefore() returns hooksBefore , which is of type uint256 . How-
ever, _hookConfig[_silo].hooksBefore is of type uint24 . The assignment code on line [25]
hooksBefore = _hookConfig[_silo].hooksBefore has a data type mismatch issue.
A similar problem also occurs in the function _getHooksAfter() , where hooksBefore is of type uint256 , but
_hookConfig[_silo].hooksAfter is of type uint24 .
Consider updating hooksBefore and hooksAfter from uint256 to uint24 .

14. Typos
Related Asset(s): InterestRateModelV2.sol, SiloMathLib.sol

• In interestRateModel/InterestRateModelV2.sol line [66], "uitn256" should read "uint256".
• In interestRateModel/InterestRateModelV2.sol line [461], "bee able to" should read "be able to".
• In lib/SiloMathLib.sol line [67], "save to uncheck" should read "safe to uncheck".

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team’s responses to the raised issues above are as follows.

1. Possible Zero Address For Immutable Variables
Related Asset(s): LiquidationHelper.sol
The zero address checks were added.

2. TODO Comment In Production Code
Related Asset(s): DexSwap.sol
The TODO comment has been removed.

Page | 20

Silo Core Detailed Findings

3. Mismatch Between Comment And Code
Related Asset(s): SiloERC4626Lib.sol and DexSwap.sol
The comments were updated to match the code.

4. Code Consistency
Related Asset(s): SiloConfig.sol
The development team acknowledged the issue and resolved no code changes were required at this time.

5. Missing Parentheses
Related Asset(s): Hook.sol
The recommended parentheses were added.

6. Lack Of NatSpec Comments
Related Asset(s): Actions.sol
Comprehensive NatSpec comments were added to the file.

7. Unnecessary Use of Parentheses
Related Asset(s): Rounding.sol
The parentheses were removed.

8. Invalid SPDX License
Related Asset(s): ShareCollateralTokenLib.sol
The file was updated to SPDX license GPL-2.0-or-later .

9. Repetitive Conversion Of Asset Type
Related Asset(s): SiloERC4626Lib.sol
The variable ISilo.AssetType collateralType was introduced.

10. Inaccurate Comparison On Function isBelowMaxLtv()

Related Asset(s): SiloSolvencyLib.sol
The development team acknowledged the issue and resolved no code changes were required at this time.

11. Caching Value During Initialisation Phase
Related Asset(s): ShareCollateralToken.sol
The development team acknowledged the issue and resolved no code changes were required at this time.

12. Potentially Inaccurate hooksBefore

Related Asset(s): GaugeHookReceiver.sol
The recommended code changes were implemented.

13. Data Type Mismatch
Related Asset(s): SiloHookReceiver.sol
The development team acknowledged the issue and resolved no code changes were required at this time.

14. Typos
Related Asset(s): InterestRateModelV2.sol, SiloMathLib.sol
The typos were not updated at the time of retesting.

All relevant changes were observed to be implemented in commit 8def80e.

Page | 21

https://github.com/silo-finance/silo-contracts-v2/commit/8def80e3d9c3cc2a9f5401e5888abdbc95cb46d0

Silo Core Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document. The
forge framework was used to perform these tests and the output is given below.

$ forge test --mt sigp --ffi

Ran 1 test for test/tests-local/Silo/InterestRateModelV2.sigp.t.sol:InterestRateModelV2TestSigp
[PASS] test_sigp_IRM_buildUpTcritSilently() (gas: 110497)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.68ms (330.51µs CPU time)

Ran 14 tests for test/tests-local/lib/Hook.sigp.t.sol:HookSigpTest
[PASS] test_sigp_afterBorrowDecode(uint256,uint256,address,address,address,uint256,uint256) (runs: 257, µ: 11040, ~: 11040)
[PASS] test_sigp_afterDepositDecode(uint256,uint256,address,uint256,uint256) (runs: 257, µ: 8398, ~: 8398)
[PASS] test_sigp_afterFlashLoanDecode(address,address,uint256,uint256) (runs: 257, µ: 7696, ~: 7696)
[PASS] test_sigp_afterRepayDecode(uint256,uint256,address,address,uint256,uint256) (runs: 257, µ: 9728, ~: 9728)
[PASS] test_sigp_afterTokenTransferDecode(address,address,uint256,uint256,uint256,uint256) (runs: 257, µ: 9662, ~: 9662)
[PASS] test_sigp_afterTransitionCollateralDecode(uint256,address,uint256) (runs: 257, µ: 6360, ~: 6360)
[PASS] test_sigp_afterWithdrawDecode(uint256,uint256,address,address,address,uint256,uint256) (runs: 257, µ: 11083, ~: 11083)
[PASS] test_sigp_beforeBorrowDecode(uint256,uint256,address,address,address) (runs: 257, µ: 8960, ~: 8960)
[PASS] test_sigp_beforeDepositDecode(uint256,uint256,address) (runs: 257, µ: 6317, ~: 6317)
[PASS] test_sigp_beforeFlashLoanDecode(address,address,uint256) (runs: 257, µ: 6653, ~: 6653)
[PASS] test_sigp_beforeRepayDecode(uint256,uint256,address,address) (runs: 257, µ: 7741, ~: 7741)
[PASS] test_sigp_beforeTransitionCollateralDecode(uint256,address) (runs: 257, µ: 5324, ~: 5324)
[PASS] test_sigp_beforeWithdrawDecode(uint256,uint256,address,address,address) (runs: 257, µ: 8961, ~: 8961)
[PASS] test_sigp_switchCollateralDecode(address) (runs: 257, µ: 4330, ~: 4330)
Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 18.19ms (180.04ms CPU time)

Ran 1 test for test/tests-local/lib/SiloMathLib.sigp.t.sol:SiloMathLibSigpTest
[PASS] test_sigp_convertToShares(uint256,uint256,uint256) (runs: 257, µ: 28299, ~: 27877)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 24.73ms (23.81ms CPU time)

Ran 1 test for test/tests-local/Silo/SiloFactoryTest.sigp.t.sol:SiloFactoryTestSigp
[PASS] test_sigp_anyoneCanBurnCreatedSiloToken() (gas: 53649)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 98.69ms (190.90µs CPU time)

Ran 14 tests for test/tests-local/Silo/Silo.sigp.t.sol:SiloTestSigp
[PASS] test_sigp_borrow_same_silo() (gas: 1031649)
[PASS] test_sigp_cannot_borrow_more_than_maxBorrow() (gas: 849766)
[PASS] test_sigp_collateral_transition_effect_on_apr() (gas: 1544729)
[PASS] test_sigp_deposit_and_withdraw() (gas: 339927)
[PASS] test_sigp_deposit_borrow() (gas: 1025277)
[PASS] test_sigp_deposit_single(uint256) (runs: 257, µ: 442658, ~: 441986)
[PASS] test_sigp_deposit_transition_collateral_and_withdraw_correct_collateral_type() (gas: 459640)
[PASS] test_sigp_deposit_transition_collateral_and_withdraw_wrong_collateral_type() (gas: 424345)
[PASS] test_sigp_deposit_twice() (gas: 295036)
[PASS] test_sigp_deposit_withdraw(uint256,uint256,uint256) (runs: 257, µ: 453000, ~: 440565)
[PASS] test_sigp_maxWithdraw_protected(uint256,uint256) (runs: 257, µ: 357496, ~: 357527)
[PASS] test_sigp_transitionCollateral() (gas: 380980)
[PASS] test_sigp_transition_collateral_after_borrow() (gas: 989668)
[PASS] test_sigp_withdraw_effect_on_apr() (gas: 1332275)
Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 248.34ms (424.82ms CPU time)

Ran 5 test suites in 249.84ms (391.64ms CPU time): 31 tests passed, 0 failed, 0 skipped (31 total tests)

Page | 22

Silo Core Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 23

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	NFTs Minted By SiloFactory Can Be Burned By Any User
	Time Based Multiplier Can Grow With Little Impact
	LiquidationHelper May Accumulate Dust Which Can Be Stolen
	Bad Debt Accrues Interest In Silo
	Potential Unwanted Result Upon Out-Of-Range Input
	Pragma Solidity Version Range Allows Breaking Changes
	Unnecessary Write Operations In _createOracles()
	No Emergency Pause Mechanism For Critical Silo Operations
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

