
Silo Finance
Smart Contract
Security Assessment

Audit dates: Mar 24 – Mar 31, 2025

1

Overview

About C4

Code4rena (C4) is a competitive audit platform where security researchers, referred to as

Wardens, review, audit, and analyze codebases for security vulnerabilities in exchange for

bounties provided by sponsoring projects.

A C4 audit is an event in which community participants, referred to as Wardens, review,

audit, or analyze smart contract logic in exchange for a bounty provided by sponsoring

projects.

During the audit outlined in this document, C4 conducted an analysis of the Silo Finance

smart contract system. The audit took place from March 24 to March 31, 2025.

Following the C4 audit, 3 wardens (d3e4, t0x1c, and Drynooo) reviewed the mitigations for

all identified issues; the mitigation review report is appended below the audit report.

Additional details can be found within the C4 Silo Mitigation Review repository.

Final report assembled by Code4rena.

Summary

The C4 analysis yielded an aggregated total of 6 unique vulnerabilities. Of these

vulnerabilities, 6 received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 13 reports detailing issues with a risk rating of LOW severity

or non-critical.

All of the issues presented here are linked back to their original finding, which may include

relevant context from the judge and Silo Finance team.

Scope

The code under review can be found within the C4 Silo Finance repository, and is composed

of 20 smart contracts written in the Solidity programming language and includes 1697 lines

of Solidity code.

Severity Criteria

C4 assesses the severity of disclosed vulnerabilities based on three primary risk categories:

high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when conducting

assessments:

2

https://code4rena.com/@d3e4
https://code4rena.com/@t0x1c
https://code4rena.com/@drynooo
https://github.com/code-423n4/2025-04-silo-finance-mitigation
https://github.com/code-423n4/2025-03-silo-finance

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

For more information regarding the severity criteria referenced throughout the submission

review process, please refer to the documentation provided on the C4 website, specifically

our section on Severity Categorization.

Medium Risk Findings (6)

[M-01] Supply function doesn't account for market maxDeposit when
providing assets to it

Submitted by SpicyMeatball, also found by 056Security, d3e4, DanielArmstrong, Dulgiq,

and Rampage

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-

vaults/contracts/SiloVault.sol#L879

Finding description and impact

Some vaults that the Silo vault deposits into have their own supply caps (do not confuse with

config[market].cap), which may prevent _supplyERC4626 from fully depositing user-

provided assets. If these caps are not accounted for, the deposit function may revert instead

of distributing assets across multiple vaults.

Proof of Concept

Consider a scenario where there are two vaults available for deposits:

Vault 1 has a supply cap of 10,000 assets and currently holds 5,000, meaning

vault1.maxDeposit is 10,000 - 5,000 = 5,000.

Vault 2 is in the same condition.

In total, 10,000 assets of deposit space are available. However, if a user tries to deposit

10,000 assets through the Silo vault, _supplyERC4626 is called:

 function _supplyERC4626(uint256 _assets) internal virtual {

 for (uint256 i; i < supplyQueue.length; ++i) {

 IERC4626 market = supplyQueue[i];

 uint256 supplyCap = config[market].cap;

 if (supplyCap == 0) continue;

3

https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-17
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-17
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-312
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-475
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-459
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-404
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-414
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-444
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L879
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L879

The function will first attempt to deposit 10,000 assets into Vault 1, but since

vault1.maxDeposit < 10,000, the transaction will revert. The same issue occurs with Vault 2,

causing the entire deposit operation to fail—even though sufficient space exists across both

vaults.

Recommended mitigation steps

To avoid this issue, the function should check market.maxDeposit before attempting a

deposit, similar to how it is handled in the _maxDeposit function:

 // Update internal balance for market to include interest if

any.

 // `supplyAssets` needs to be rounded up for `toSupply` to be

rounded down.

 uint256 supplyAssets =

_updateInternalBalanceForMarket(market);

 uint256 toSupply =

UtilsLib.min(UtilsLib.zeroFloorSub(supplyCap, supplyAssets), _assets);

 if (toSupply != 0) {

 uint256 newBalance = balanceTracker[market] + toSupply;

 // As `_supplyBalance` reads the balance directly from

the market,

 // we have additional check to ensure that the market did

not report wrong supply.

 if (newBalance <= supplyCap) {

 // Using try/catch to skip markets that revert.

>> try market.deposit(toSupply, address(this)) {

 _assets -= toSupply;

 balanceTracker[market] = newBalance;

 } catch {}

 }

 }

 if (_assets == 0) return;

 }

 function _maxDeposit() internal view virtual returns (uint256

totalSuppliable) {

 for (uint256 i; i < supplyQueue.length; ++i) {

 IERC4626 market = supplyQueue[i];

 uint256 supplyCap = config[market].cap;

 if (supplyCap == 0) continue;

4

In the _supplyERC4626 function:

With this fix, the Silo vault will distribute deposits correctly:

5,000 assets will be deposited into Vault 1.

5,000 assets will be deposited into Vault 2.

This prevents unnecessary reverts and ensures that all available deposit space is properly

utilized.

IhorSF (Silo Finance) confirmed

Silo Finance mitigated:

This PR here accounts for MaxDeposit when completing a deposit

Status: Mitigation confirmed. Full details in reports from d3e4, t0x1c, and Drynooo.

[M-02] SiloVault will incorrectly accrue rewards during user
transfer/transferFrom actions due to unsynced totalSupply()

 (uint256 assets,) = _supplyBalance(market);

>> uint256 depositMax = market.maxDeposit(address(this));

>> uint256 suppliable = Math.min(depositMax,

UtilsLib.zeroFloorSub(supplyCap, assets));

 function _supplyERC4626(uint256 _assets) internal virtual {

 for (uint256 i; i < supplyQueue.length; ++i) {

 IERC4626 market = supplyQueue[i];

 uint256 supplyCap = config[market].cap;

 if (supplyCap == 0) continue;

 // Update internal balance for market to include interest if

any.

 // `supplyAssets` needs to be rounded up for `toSupply` to be

rounded down.

 uint256 supplyAssets =

_updateInternalBalanceForMarket(market);

 uint256 toSupply =

UtilsLib.min(UtilsLib.zeroFloorSub(supplyCap, supplyAssets), _assets);

+ toSupply = Math.min(market.maxDeposit(address(this),

toSupply));

5

https://github.com/code-423n4/2025-04-silo-finance-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://github.com/silo-finance/silo-contracts-v2/pull/1166
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-14
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-1
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-7
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-26
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-26

Submitted by oakcobalt, also found by aldarion and seeques

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L985

Finding description and impact

SiloVault's totalSupply() accrueFees from interests (delta totalAssets). Such fee accrual is

updated through _accrueFee() which mints an additional share to the fee reciever.

We see that when claiming rewards directly through claimRewards() the accrued extra share

is updated first before _claimRewards().

The vulnerability is when _claimRewards() is invoked atomically through hooks (_update),

the _accrueFee() will be missed in the user's transfer/transferFrom call. In this case, an

incorrect totalSupply() will be used for fee accrual, leading to incorrect fee accrual.

Impacts: incorrect and inconsistent reward accrual due to unsynced totalSupply().

Recommended mitigation steps

In _update() hook, consider adding _accrueFee() or

_updateLastTotalAssets(_accrueFee()) before _claimRewards().

Proof of Concept

We see in direct claimRewards flow. totalSupply() will be updated in _accrueFee().

 function claimRewards() public virtual {

 _nonReentrantOn();

|> _updateLastTotalAssets(_accrueFee());

 _claimRewards();

 _nonReentrantOff();

 }

 function _accrueFee() internal virtual returns (uint256

newTotalAssets) {

 uint256 feeShares;

 (feeShares, newTotalAssets) = _accruedFeeShares();

 //@audit this will increase totalSupply()

|> if (feeShares != 0) _mint(feeRecipient, feeShares);

6

https://code4rena.com/audits/2025-03-silo-finance/submissions/S-566
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-57
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-397
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L985
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L985
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L985
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L944

However, the vulnerable flow is transfer/transferFrom -> _update(), where _accrueFee() is

missed.

We know transfer/transferFrom flow is vulnerable because unlike deposit/withdraw which

calls _accrueFee() first, transfer/transferFrom will directly call _update() without updating

totalSupply. This causes an incorrect/inconsistent reward accrual.

IhorSF (Silo Finance) disputed

Silo Finance mitigated:

This PR here fixes the accrue on transfer for SiloVault.

Status: Mitigation confirmed. Full details in reports from d3e4, t0x1c, and Drynooo.

 emit EventsLib.AccrueInterest(newTotalAssets, feeShares);

 }

 function _update(address _from, address _to, uint256 _value) internal

virtual override {

 // on deposit, claim must be first action, new user should not

get reward

 // on withdraw, claim must be first action, user that is leaving

should get rewards

 // immediate deposit-withdraw operation will not abused it,

because before deposit all rewards will be

 // claimed, so on withdraw on the same block no additional

rewards will be generated.

 // transfer shares is basically withdraw->deposit, so claiming

rewards should be done before any state changes

|> _claimRewards(); //@audit rewards is claimed without first

updating totalSupply(). transfer/transferFrom flow is vulnerable.

 super._update(_from, _to, _value);

 if (_value == 0) return;

 _afterTokenTransfer(_from, _to, _value);

 }

7

https://github.com/code-423n4/2025-04-silo-finance-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://github.com/silo-finance/silo-contracts-v2/pull/1168
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-15
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-2
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-10

[M-03] SiloVault.sol :: Markets with assets that revert on zero approvals
cannot be removed.

Submitted by Fitro, also found by grearlake, nuthan2x, and Samueltroydomi

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L252-L267

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L272

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/libraries/SiloVaultActionsLib.sol#L29-L65

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L329

Finding description and impact

To remove a market from the vault, the supply cap must be set to 0. However, when this

happens, the market's allowance to use tokens from the vault is also reset to 0. The issue

arises because some tokens revert when attempting to approve a 0 value, preventing these

markets from being removed from the vault.

Proof of Concept

submitMarketRemoval() is implemented as follows.

function submitMarketRemoval(IERC4626 _market) external virtual

onlyCuratorRole {

 if (config[_market].removableAt != 0) revert

ErrorsLib.AlreadyPending();

@> if (config[_market].cap != 0) revert ErrorsLib.NonZeroCap();

 if (!config[_market].enabled) revert

ErrorsLib.MarketNotEnabled(_market);

 if (pendingCap[_market].validAt != 0) revert

ErrorsLib.PendingCap(_market);

 // Safe "unchecked" cast because timelock <= MAX_TIMELOCK.

 config[_market].removableAt = uint64(block.timestamp + timelock);

 emit EventsLib.SubmitMarketRemoval(_msgSender(), _market);

8

https://code4rena.com/audits/2025-03-silo-finance/submissions/F-57
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-57
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-107
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-442
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-425
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-540
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L252-L267
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L252-L267
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L252-L267
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L272
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L272
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L272
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/libraries/SiloVaultActionsLib.sol#L29-L65
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/libraries/SiloVaultActionsLib.sol#L29-L65
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/libraries/SiloVaultActionsLib.sol#L29-L65
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L329
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L329
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L329

As you can see, removing a market requires setting the cap to 0 (the same applies to

updateWithdrawQueue().). This is done by calling submitCap() with _newSupplyCap set to 0.

In this case, the execution will enter the if section, which calls _setCap(), which invokes

setCap() from the SiloVaultActionsLib.

 }

function submitCap(IERC4626 _market, uint256 _newSupplyCap) external

virtual onlyCuratorRole {

 if (_market.asset() != asset()) revert

ErrorsLib.InconsistentAsset(_market);

 if (pendingCap[_market].validAt != 0) revert

ErrorsLib.AlreadyPending();

 if (config[_market].removableAt != 0) revert

ErrorsLib.PendingRemoval();

 uint256 supplyCap = config[_market].cap;

 if (_newSupplyCap == supplyCap) revert ErrorsLib.AlreadySet();

 if (_newSupplyCap < supplyCap) {

 _setCap(_market, SafeCast.toUint184(_newSupplyCap));

 } else {

 pendingCap[_market].update(SafeCast.toUint184(_newSupplyCap),

timelock);

 emit EventsLib.SubmitCap(_msgSender(), _market,

_newSupplyCap);

 }

 }

function setCap(

 IERC4626 _market,

 uint184 _supplyCap,

 address _asset,

 mapping(IERC4626 => MarketConfig) storage _config,

 mapping(IERC4626 => PendingUint192) storage _pendingCap,

 IERC4626[] storage _withdrawQueue

) external returns (bool updateTotalAssets) {

 MarketConfig storage marketConfig = _config[_market];

 uint256 approveValue;

 if (_supplyCap > 0) {

 if (!marketConfig.enabled) {

9

As you can see, we do not enter the if block because _supplyCap = 0, which results in

approveValue = 0 (default value). This is expected since we want to clear the market’s

allowance. However, some assets (such as BNB) revert when the approval value is set to 0,

causing forceApprove() to fail.

As a result, the cap cannot be set to 0, preventing the market from being removed.

Furthermore, if the vault relies on markets with such assets and they cannot be removed, new

ones cannot be added due to the MAX_QUEUE_LENGTH restriction.

In this case, forceApprove() will not resolve the issue because it is only useful for tokens that

revert when the previous allowance is not set to zero. It does not address tokens that revert

due to 0 approval amounts.

 _withdrawQueue.push(_market);

 if (_withdrawQueue.length >

ConstantsLib.MAX_QUEUE_LENGTH) revert ErrorsLib.MaxQueueLengthExceeded();

 marketConfig.enabled = true;

 // Take into account assets of the new market without

applying a fee.

 updateTotalAssets = true;

 emit EventsLib.SetWithdrawQueue(msg.sender,

_withdrawQueue);

 }

 marketConfig.removableAt = 0;

 // one time approval, so market can pull any amount of tokens

from SiloVault in a future

 approveValue = type(uint256).max;

 }

 marketConfig.cap = _supplyCap;

@> IERC20(_asset).forceApprove(address(_market), approveValue);

 emit EventsLib.SetCap(msg.sender, _market, _supplyCap);

 delete _pendingCap[_market];

 }

 function forceApprove(IERC20 token, address spender, uint256 value)

internal {

10

https://github.com/d-xo/weird-erc20?tab=readme-ov-file#revert-on-large-approvals--transfers
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a31b4a438ad9b11368976140acd7da3ae27d717d/contracts/token/ERC20/utils/SafeERC20.sol#L101-L108

As you can see, if the initial approval call fails, the function first resets the allowance to zero

and then attempts to approve the provided value again. However, since the value is 0, it will

fail another time reverting the transaction.

According to the contest specifications, tokens that Revert on zero value approvals are

explicitly within scope.

Recommended mitigation steps

To resolve this issue, approveValue can be set to 1 instead of leaving it at the default uint256

value.

 bytes memory approvalCall = abi.encodeCall(token.approve,

(spender, value));

 if (!_callOptionalReturnBool(token, approvalCall)) {

 _callOptionalReturn(token, abi.encodeCall(token.approve,

(spender, 0)));

 _callOptionalReturn(token, approvalCall);

 }

 }

function setCap(

 IERC4626 _market,

 uint184 _supplyCap,

 address _asset,

 mapping(IERC4626 => MarketConfig) storage _config,

 mapping(IERC4626 => PendingUint192) storage _pendingCap,

 IERC4626[] storage _withdrawQueue

) external returns (bool updateTotalAssets) {

 MarketConfig storage marketConfig = _config[_market];

- uint256 approveValue;

+ uint256 approveValue = 1;

 if (_supplyCap > 0) {

 if (!marketConfig.enabled) {

 _withdrawQueue.push(_market);

 if (_withdrawQueue.length >

ConstantsLib.MAX_QUEUE_LENGTH) revert ErrorsLib.MaxQueueLengthExceeded();

 marketConfig.enabled = true;

 // Take into account assets of the new market without

applying a fee.

11

IhorSF (Silo Finance) confirmed

Silo Finance mitigated:

This PR here resets approval to 1 wei.

Status: Mitigation confirmed. Full details in reports from d3e4, t0x1c, and Drynooo.

[M-04] Lack of slippage and deadline protection in deposit(), withdraw()
and redeem()

Submitted by t0x1c, also found by anchabadze, Aristos, falconhoof, harsh123, hezze,

NexusAudits, and RaOne

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-

vaults/contracts/SiloVault.sol#L569

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-

vaults/contracts/SiloVault.sol#L942

Description

1. When users deposit funds, those assets are allocated to one or more underlying

ERC4626 markets according to the supply queue.

 updateTotalAssets = true;

 emit EventsLib.SetWithdrawQueue(msg.sender,

_withdrawQueue);

 }

 marketConfig.removableAt = 0;

 // one time approval, so market can pull any amount of tokens

from SiloVault in a future

 approveValue = type(uint256).max;

 }

 marketConfig.cap = _supplyCap;

 IERC20(_asset).forceApprove(address(_market), approveValue);

 emit EventsLib.SetCap(msg.sender, _market, _supplyCap);

 delete _pendingCap[_market];

 }

12

https://github.com/code-423n4/2025-04-silo-finance-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://github.com/silo-finance/silo-contracts-v2/pull/1165
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-16
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-3
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-9
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-195
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-195
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-103
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-92
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-464
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-549
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-233
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-501
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-518
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-277
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L569
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L569
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L942
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L942
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L569

2. When withdrawing or redeeming, assets are pulled from the underlying markets

according to the withdraw queue and shares burned.

None of these actions allow the user to specify any acceptable slippage or deadline.

The vault interacts with multiple ERC4626 vaults. Share price in these underlying vaults

can change between transaction submission and execution.

During deposit, the protocol might need to distribute assets across multiple markets

based on their caps. This multi-step process could expose users to price changes.

During withdrawals or redemptions, the protocol attempts to pull assets from markets in

a specific order. If a market has insufficient liquidity, the next market is tried, which

might have different share pricing.

The _accrueFee() function is called during both deposit and withdrawal, which can

change the conversion rate between shares and assets.

Additionally, there's a risk of transactions getting stuck in the mempool during periods of

network congestion and hence deadline protection is needed.

Impact

User may recieve less than expected shares or assets due to unfavourable price movement or

execution delays.

Recommendation

Allow the user to specify paramaters like minShares, minAssets while calling these functions.

IhorSF (Silo Finance) disputed

[M-05] Incorrect reward distribution due to feeShares minting order

Submitted by t0x1c, also found by Drynooo

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-

vaults/contracts/SiloVault.sol#L976-L992

Summary

The current implementation distributes rewards before minting fee shares, resulting in the fee

recipient receiving shares but no rewards for the corresponding interest accrual period. This

creates an inconsistency where the exisiting share owners receive higher than deserved

portion of rewards.

Description

Let's assume Bob is the sole shareholder. What's happening right now is:

13

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L942
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-207
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-78
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-343
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L976-L992
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L976-L992

Bob deposits at t and receives 100% shares (for simplicity let's ignore, for now, the

DECIMALS_OFFSET strategy deployed by the protocol to thwart the first-depositor

attack).

At some time, t2, we see that yield & reward has accrued.

Someone calls claimRewards() which first internally calls

_updateLastTotalAssets(_accrueFee()) and then _claimRewards():

_accrueFee() internally calls _mint() if feeShares != 0.

Note that _accruedFeeShares() on L944 is a retrospective way to calculate the

feeShares which should correspond to the feeAssets amount applied on the

accumulated interest. This is done because the total assets have already grown between

t and t2. This is evident from the newTotalAssets - feeAssets term inside

_accruedFeeShares() and also the comments on L960-961:

 File: silo-vaults/contracts/SiloVault.sol

 495: function claimRewards() public virtual {

 496: _nonReentrantOn();

 497:

 498:@---> _updateLastTotalAssets(_accrueFee());

 499:@---> _claimRewards();

 500:

 501: _nonReentrantOff();

 502: }

 942: function _accrueFee() internal virtual returns

(uint256 newTotalAssets) {

 943: uint256 feeShares;

 944: (feeShares, newTotalAssets) =

_accruedFeeShares();

 945:

 946:@---> if (feeShares != 0) _mint(feeRecipient,

feeShares);

 947:

 948: emit EventsLib.AccrueInterest(newTotalAssets,

feeShares);

 949: }

 951: /// @dev Computes and returns the fee shares

(`feeShares`) to mint and the new vault's total assets

14

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L495
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L946
https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L951-L969

What this means is that the fee recipient is going to be minted the feeShares currently

because they have a rightful claim to the feeAssets which started to accrue right from

timestamp t.

With that in mind, let's see the remaining steps -

On L946 _accrueFee() --> _mint() internally calls the overridden _update()

function, which in turn calls _claimRewards() before super._update() actually mints

these feeShares and increases totalSupply(). As the inline code comments explain,

this is meant to be a safeguard and it is required so that rewards can be claimed before

a new deposit/withdraw/transfer:

 952: /// (`newTotalAssets`).

 953: function _accruedFeeShares() internal view virtual

returns (uint256 feeShares, uint256 newTotalAssets) {

 954: newTotalAssets = totalAssets();

 955:

 956: uint256 totalInterest =

UtilsLib.zeroFloorSub(newTotalAssets, lastTotalAssets);

 957: if (totalInterest != 0 && fee != 0) {

 958: // It is acknowledged that `feeAssets` may

be rounded down to 0 if `totalInterest * fee < WAD`.

 959: uint256 feeAssets =

totalInterest.mulDiv(fee, WAD);

 960:@---> // The fee assets is subtracted from the

total assets in this calculation to compensate for the fact

 961:@---> // that total assets is already increased by

the total interest (including the fee assets).

 962: feeShares = _convertToSharesWithTotals(

 963: feeAssets,

 964: totalSupply(),

 965:@---> newTotalAssets - feeAssets,

 966: Math.Rounding.Floor

 967:);

 968: }

 969: }

 976: function _update(address _from, address _to, uint256

_value) internal virtual override {

 977: // on deposit, claim must be first action, new

user should not get reward

 978:

 979: // on withdraw, claim must be first action, user

that is leaving should get rewards

15

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L985

In this case however, what it means is that the entire reward is doled out to Bob since he

possesses 100% of shares because the feeShares are yet to be minted. By the time the

control reaches the second call to _claimRewards() on L499 after minting of these shares,

there are no more rewards left to be distributed to the fee recipient.

Impact

The shares of the fee recipient will now only receive any future rewards and miss out on

the current one even though the shares have been rightly minted to them

retrospectively. Conversely put, Bob receives more than his fair share of rewards.

Note that this is not just a one-time loss of rewards for the fee recipient. Each time

claimRewards() is called and there is a pending yield to be collected, feeShares

minted in that cycle lose out on the rewards being distributed. They only get to see a

portion of the rewards from the next cycle onwards.

Recommendation

The current logic of calling _claimRewards() from inside _update() is correct and works

well for all the other cases, so no issues there. For cases where feeShares are being minted,

however, we may need to introduce additional logic inside _claimRewards() which checks

for this via a new flag and calculates the reward portion after accounting for these

retrospectively minted feeShares.

edd (Silo Finance) acknowledged

[M-06] Deflation attack

 980: // immediate deposit-withdraw operation will not

abused it, because before deposit all rewards will be

 981: // claimed, so on withdraw on the same block no

additional rewards will be generated.

 982:

 983: // transfer shares is basically withdraw-

>deposit, so claiming rewards should be done before any state changes

 984:

 985:@---> _claimRewards();

 986:

 987: super._update(_from, _to, _value);

 988:

 989: if (_value == 0) return;

 990:

 991: _afterTokenTransfer(_from, _to, _value);

 992: }

16

https://github.com/code-423n4/2025-03-silo-finance/blob/main/silo-vaults/contracts/SiloVault.sol#L499
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-11

Submitted by d3e4

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L1

Finding description and impact

The flow of assets between SiloVault and its markets favour the markets (per standard

ERC4626 specifications). This means that SiloVault can lose assets compared to its total

supply of shares. This deflates the share price. At low total asset levels, this can be exploited

to deflate the share price until the shares per asset is close to overflowing.

This can be exploited to either simply brick the vault, or such that the attacker is the

guaranteed sole holder and recipient of the incentive rewards.

Proof of Concept

The shares minted is calculated as _assets.mulDiv(_newTotalSupply + 10 **

_decimalsOffset(), _newTotalAssets + 1, _rounding), where the total assets is based

on the redeemable value of all market shares held by SiloVault.

For example, the first depositor deposits 1 wei into SiloVault, which deposits this into a market,

and mints 10 ** _decimalsOffset() shares. The market, however, is likely to round this

away and not return any share to SiloVault. On the next deposit into SiloVault, totalAssets is

zero, but 10 ** _decimalsOffset() shares were minted. Again depositing 1 wei mints 2 *

10 ** _decimalsOffset(), without increasing totalAssets. Each repetition doubles the

total supply.

The same would, of course, happen if totalAssets on deposit did increase to 1 but due to

the market updating its price, this later became 0.

Suppose SiloVault were to instead mint shares according to the increase in totalAssets.

Then no shares would be minted in the above example. Suppose then instead 10 wei are

deposited into SiloVault, which deposits this into a market, in return, for 8 market shares (let's

say the market's price is 1.13 assets/share). This is redeemable for 9 asset tokens, so SiloVault

mints 9 * 10 ** _decimalsOffset() shares. Now, redeeming 8 * 10 **

_decimalsOffset() shares from SiloVault makes SiloVault withdraw 8 asset tokens from the

market. Withdrawing 8 asset tokens burns not 7.08 but all 8 market shares, and SiloVault is

now, just as above, left with zero totalAssets but a total supply of 1 * 10 **

_decimalsOffset().

Recommended mitigation steps

17

https://code4rena.com/audits/2025-03-silo-finance/submissions/S-454
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L1
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L1
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L1
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L647-L652

Set the virtual assets to 10**DECIMALS_OFFSET (the same as the virtual shares, instead of the

hardcoded 1). This acts as a virtual deposit which makes both the inflation attack and the

attack described here infeasible. The only downside is that interest earned in the markets is

effectively accrued also to the virtual deposit, for which reason, the virtual deposit should be

chosen such that it is small in monetary value but still a large integer. Then the lost interest

will be negligible.

IhorSF (Silo Finance) confirmed

edd (Silo Finance) commented:

The issue is confirmed however I'd argue it should not be a high severity. There is very low

likelihood of this issue happening. Taking over empty vault has no point. If there is one legit

deposit, even small, issue is gone. This is similar to inflation attack or first deposit attack that

are not considered critical.

Silo Finance mitigated:

The PRs here and here only ensure that deposit does not generate zero shares.

Status: Unmitigated. Full details in reports from d3e4.

Code4rena judging staff adjusted the severity of Finding [M-06], after reviewing additional

context provided by the sponsor.

Low Risk and Non-Critical Issues

For this audit, 13 reports were submitted by wardens detailing low risk and non-critical issues.

The report highlighted below by Drynooo received the top score from the judge.

The following wardens also submitted reports: 0xterrah, c0pp3rscr3w3r, codexNature,

dystopia, holtzzx, MatricksDeCoder, newspacexyz, PolarizedLight, rayss, Sparrow,

TheCarrot, and Yaneca_b.

_incentivesProgramIds too long will cause the loop to be too large, and
the transaction will be reverted because it exceeds the gas limit.

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

core/contracts/incentives/SiloIncentivesController.sol#L79

Finding description and impact

In the SiloIncentivesController contract, the owner can only add _incentivesProgramIds by

calling the createIncentivesProgram function, with no way to reduce _incentivesProgramIds.

However, the length of _incentivesProgramIds is used in multiple places for loops. For

18

https://code4rena.com/audits/2025-03-silo-finance/submissions/S-454?commentParent=wcMpQYPnLLe&commentChild=cKqLeT5X5Qd
https://github.com/code-423n4/2025-04-silo-finance-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://github.com/silo-finance/silo-contracts-v2/pull/1162
https://github.com/silo-finance/silo-contracts-v2/pull/1173
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-12
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-351
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-533
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-144
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-76
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-553
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-229
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-58
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-79
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-368
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-433
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-555
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-113
https://code4rena.com/audits/2025-03-silo-finance/submissions/S-386
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesController.sol#L79
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesController.sol#L79
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesController.sol#L79

example, in the afterTokenTransfer function, this could cause any transfer call from siloVault to

fail. As a result, the funds in siloVault would be locked and unable to be withdrawn.

Proof of Concept

1. The owner can add _incentivesProgramIds through the createIncentivesProgram

function but cannot reduce it.

2. In the afterTokenTransfer function, the loop is based on the length of

_incentivesProgramIds. When _incentivesProgramIds reaches a certain length, the loop

may cause the transaction to exceed the gas limit and revert.

3. Since the siloVault also calls afterTokenTransfer during withdrawal, this could result in

users' funds being stuck in the contract and unable to be withdrawn.

Recommended mitigation steps

It is recommended to add a function that allows the administrator to remove unnecessary

elements from _incentivesProgramIds.

The SiloIncentivesControllerFactory contract may cause the protocol to
lose funds due to chain reorganization.

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

core/contracts/incentives/SiloIncentivesControllerFactory. sol#L14

Finding description and impact

When the protocol uses the SiloIncentivesControllerFactory contract to create a

SiloIncentivesController contract and injects incentive funds into it, the system becomes

highly vulnerable to chain reorganization (reorg) attacks, potentially leading to fund theft.

Proof of Concept

require(_incentivesProgramIds.add(programId),

IncentivesProgramAlreadyExists());

 uint256 numberOfPrograms = _incentivesProgramIds.length();

···

 for (uint256 i = 0; i < numberOfPrograms; i++) {

19

https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/base/BaseIncentivesController.sol#L46
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesController.sol#L30
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L991
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesControllerFactory
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesControllerFactory
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-core/contracts/incentives/SiloIncentivesControllerFactory

Chain reorganizations (reorgs) can occur across all EVM-compatible chains, including major

L2 solutions such as Arbitrum and Polygon. For reference, here's a link documenting

Polygon's forked blocks - representing blocks that were excluded due to "Block

Reorganizations": https://polygonscan.com/blocks_forked?p=1.

The attack may occur as follows:

1. The project first deploys SiloIncentivesControllerA through

SiloIncentivesControllerFactory and transfers reward funds into it.

2. The attacker detects a chain reorganization.

3. The attacker front-runs by calling create() to deploy SiloIncentivesController, which

deploys to the same address as SiloIncentivesControllerA, but with the attacker as

owner. Funds are then transferred to this address.

4. The attacker withdraws the funds via rescueRewards to profit.

This causes direct financial loss to the protocol. However, due to its low probability, it is

assessed as medium severity.

Recommended mitigation steps

It is recommended to:

Add an owner role to the SiloIncentivesControllerFactory contract, where only the owner can

perform create operations. Alternatively, use CREATE2 and include msg.sender in the salt

parameter.

The SiloVaultsFactory contract may cause the protocol to lose funds due
to chain reorganization.

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVaultsFactory.sol#L53

Finding description and impact

When the protocol uses the SiloVaultsFactory contract to create a SiloVault contract and

injects incentive funds into it, the system becomes highly vulnerable to chain reorganization

(reorg) attacks, potentially leading to fund theft.

Proof of Concept

Chain reorganizations (reorgs) can occur across all EVM-compatible chains, including major

L2 solutions such as Arbitrum and Polygon. For reference, here's a link documenting

Polygon's forked blocks - representing blocks that were excluded due to "Block

Reorganizations": https://polygonscan.com/blocks_forked?p=1.

20

https://polygonscan.com/blocks_forked?p=1
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVaultsFactory.sol#L53
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVaultsFactory.sol#L53
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVaultsFactory.sol#L53
https://polygonscan.com/blocks_forked?p=1

The attack may occur as follows:

1. The project team first deploys SiloVaultA through SiloVaultsFactory and transfers initial

staking funds into it.

2. The attacker detects a chain reorganization.

3. The attacker front-runs the transaction by calling create to deploy SiloVault, which

results in deploying to the same address as SiloVaultA, but with the attacker as the

owner. The funds are also transferred to this address. Additionally, the owner of the

vaultIncentivesModule contract created here is also the attacker.

4. Subsequently, the attacker can modify configurations so that when the _claimRewards

function is called, a delegatecall executes logic specified by the attacker, thereby

draining all funds from the vault.

This poses a direct financial loss to the protocol, but due to its low probability, it is assessed

as a medium-severity issue.

Recommended mitigation steps

It is recommended to: Add an owner role to the SiloIncentivesControllerFactory contract,

where only the owner can perform create operations. Alternatively, use CREATE2 and include

msg.sender in the salt parameter.

SiloVault does not comply with ERC4626.

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L647

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L518

Finding description and impact

The ERC4626 standard explicitly mandates that the totalAssets and maxDeposit functions

must not revert, yet they remain susceptible to reverting.

Proof of Concept

The ERC4626 standard specifies the following requirements:

totalAssets : MUST NOT revert. maxDeposit : MUST NOT revert. previewRedeem : MUST

NOT revert due to vault specific user/global limits. MAY revert due to other conditions that

would also cause redeem to revert.

21

https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L1018
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L647
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L647
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L647
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L518
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L518
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L518
https://eips.ethereum.org/EIPS/eip-4626#totalAssets
https://eips.ethereum.org/EIPS/eip-4626#maxdeposit
https://eips.ethereum.org/EIPS/eip-4626#previewRedeem

However, both the totalAssets and maxDeposit functions call the previewRedeem function of

another ERC4626 contract. This means that both totalAssets and maxDeposit could

potentially revert, which violates the standards requirement that they must not revert.

Since the protocol explicitly requires compliance with ERC4626 in its documentation, this

should be classified as a Medium severity issue.

Recommended mitigation steps

It is recommended to use a try-catch block when calling the previewRedeem function to

prevent potential reverts.

The vault's decimal precision is hardcoded to return 18, which doesn't
match its actual precision. This discrepancy may lead to incorrect value
assessments when inherited by external contracts.

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L122

https://github.com/code-423n4/2025-03-silo-

finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-

vaults/contracts/SiloVault.sol#L513

Finding description and impact

The vault's decimal precision is hardcoded to return 18, which doesn't match its actual

precision. This discrepancy may lead to incorrect value assessments when inherited by

external contracts.

Proof of Concept

When inheriting from OpenZeppelin's ERC4626, the share decimals should be (asset

decimals + DECIMALS_OFFSET), which should be 24 in this contract.

However, the contract always returns 18 as its decimals, which will cause: Frontend display

confusion Off-chain value calculation inaccuracies

For example: When depositing 1 USDC (6 decimals), the protocol calculates shares as:

 DECIMALS_OFFSET = uint8(UtilsLib.zeroFloorSub(18 + 6, decimals));

1e6 × 1e18 / 1 = 1e24 shares

22

https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L1038
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L122
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L122
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L122
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L513
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L513
https://github.com/code-423n4/2025-03-silo-finance/blob/0409be5b85d7aabfbbe10de1de1890d4b862d2d5/silo-vaults/contracts/SiloVault.sol#L513

However, since the contract incorrectly returns 18 decimals:

 Misinterpretation: Users/contracts will assume 1e6 shares exist

 Reality: Only 1 share (1e24 raw units) was actually minted

Recommended mitigation steps

Do not override the decimals function.

Mitigation Review

Introduction

Following the C4 audit, 3 wardens (d3e4, t0x1c, and Drynooo) reviewed the mitigations for

all identified issues. Additional details can be found within the Silo Finance Mitigation Review

repository.

Mitigation Review Scope & Summary

The wardens confirmed the mitigations for all in-scope findings except for M-06, where the

finding was not mitigated. The table below provides details regarding the status of each in-

scope vulnerability from the original audit and the in-scope vulnerability that was not fully

mitigated.

ORIGINAL ISSUE STATUS MITIGATION URL

M-01 🟢 Mitigated PR 1166

M-02 🟢 Mitigated PR 1168

M-03 🟢 Mitigated PR 1165

M-06 🔴 Unmitigated PR 1162 (solution) and PR 1173 (optimization)

M-06 Unmitigated

Submitted by d3e4.

Original issue: https://code4rena.com/audits/2025-03-silo-finance/submissions/F-11

F-11 summary

_assets.mulDiv(_newTotalSupply + 10 ** _decimalsOffset(), _newTotalAssets

+ 1, _rounding);

23

https://code4rena.com/@d3e4
https://code4rena.com/@t0x1c
https://code4rena.com/@drynooo
https://github.com/code-423n4/2025-04-silo-finance-mitigation
https://github.com/code-423n4/2025-04-silo-finance-mitigation
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-17
https://github.com/silo-finance/silo-contracts-v2/pull/1166
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-26
https://github.com/silo-finance/silo-contracts-v2/pull/1168
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-57
https://github.com/silo-finance/silo-contracts-v2/pull/1165
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-11
https://github.com/silo-finance/silo-contracts-v2/pull/1162
https://github.com/silo-finance/silo-contracts-v2/pull/1173
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-12
https://code4rena.com/audits/2025-05-silo-finance-mitigation-review/submissions/S-12
https://code4rena.com/audits/2025-03-silo-finance/submissions/F-11

The issue was that the SiloVault share supply could be inflated by deposits which suffer

(rounding) losses when deposited into the markets.

Review - Unmitigated, with error

A check that the deposit return non-zero market shares has been added in _marketSupply.

_supplyERC4626 calls _marketSupply with _revertOnFail = false. Then, when the market

deposit would return 0 market shares _marketSupply will return (false, 0) (since deposit

returns the same or more shares as previewDeposit). reallocate calls _marketSupply with

_revertOnFail = true. Then, when the market deposit returns 0 market shares the

transaction reverts. This revert is problematic because this may allow an attacker to DoS a

reallocate by depositing such that the reallocation only attempts to deposit such a reverting

amount in the market. This error is also reported separately.

This mitigation is ineffective since the attacker can just deposit e.g. 2 assets for 1 market share

(redeemable for 1 asset). The typical rounding loss is 1 wei, regardless of the magnitude of the

amounts. Suppose the decimals offset is 6. This will then return 2e6 shares, but the vault's

totalAssets is now only 1. The price is then (2e6 + 1e6) / (1 + 1) = 1.5e6 shares per asset. The

attacker can then withdraw the 1 asset for 1.5e6 shares, leaving the vault with 0.5e6 shares

minted and no assets. Depositing 2 again returns 3e6 shares. The price is then (0.5e6 + 3e6

+ 1e6) / (1 + 1) = 2.25e6. He can again withdraw 2.25e6 shares and leave the vault with

1.25e6 shares and no assets. We see that each deposit/withdraw iteration inflates the shares

by 50%, rather than 100% if we could deposit 1 asset for 0 market shares. This only means

that we need to perform 2 * 1 / log2(1.5) ≈ 3.42 times more function calls than before to

inflate it as much. The calls needed were at most 256, so still at most a very feasible 876

function calls.

if (!_revertOnFail && _market.previewDeposit(_assets) == 0) {

 return (false, 0);

}

...

try _market.deposit(_assets, address(this)) returns (uint256 gotShares) {

 require(gotShares != 0, ErrorsLib.ZeroShares());

 shares = gotShares;

 success = true;

 _priceManipulationCheck(_market, shares, _assets);

} catch (bytes memory data) {

 if (_revertOnFail) ErrorsLib.revertBytes(data);

}

24

Recommendation

Rounding losses are a part of ERC4626. Therefore this deflation attack cannot be fully

prevented in theory, but must be made unfeasible by making the effect negligible. I believe

the only effective solution is to set the virtual assets using the same offset as for the virtual

shares. This is equivalent to an initial deposit that cannot be withdrawn. Then a deposit

increasing the totalAssets by 1 less than it should is negligible compared to a number such as

1e18, and it is unfeasible to repeat this anywhere near 1e18 times.

Links to affected code

SiloVault.sol#L1

Disclosures

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in smart contracts.

Security researchers are rewarded at an increasing rate for finding higher-risk issues. Audit

submissions are judged by a knowledgeable security researcher and disclosed to sponsoring

developers. C4 does not conduct formal verification regarding the provided code but instead

provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All

smart contract software should be used at the sole risk and responsibility of users.

25

https://github.com/silo-finance/silo-contracts-v2/blob/09f2e947b957f03a4bd825e3de2fddddfeb8b075/silo-vaults/contracts/SiloVault.sol#L1

