
Draf
t

Security Assessment

Final Report

Silo Router

February 2025

Prepared for Silo

Table of Contents

Project Summary...3
Project Scope.. 3
Project Overview... 3

Protocol Overview... 3
Threat model... 3

Findings Summary.. 4
Severity Matrix...4
Informational Severity Issues.. 5
I-01 Type Confusion: withdraw Returns Shares, Not Assets...5
I-02 sendValueAll/transferAll shouldn't be up to the user to call..7
I-03 DOS or Leftover Funds Due to Fixed Amounts in unwrap/transfer/sendValue.. 8
I-04 No Slippage Protection.. 10
I-05 sendValueAll/transferAll shouldn't be up to the user to call..11
Dismissed Concerns... 12

Repayments Paused While Liquidations Enabled...12
Easily Bypassable Pause Mechanism...13
Repayment/deposits will revert with Fee-On-Transfer tokens...14
Repayment could be made to revert... 15
No direct mint/redeem: is that a design decision?...15
Owner can renounce while system is paused... 15

Formal Verification..15
Verification Notations...16
Formal Verification Properties... 17
SiloRouter..17
P-01. Integrity of pausing and ownership.. 17
SiloRouterImplementation... 18
Module General Assumptions... 18
P-02. Methods’ inverses..18
P-03. Methods don’t affect others... 18

Disclaimer.. 20
About Certora.. 20

 2

Project Summary
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Platform

silo-contracts-v2
https://github.com/silo-finance/silo-cont
racts-v2/tree/feature/silo-router-for-all

69998658 EVM

Project Overview

This document describes the manual review of the “silo-core: Silo router redesign” Pull Request. The work was
undertaken from 04.02.25 to 10.02.25.

The following contract list is included in our scope:

silo-core/contracts/silo-router/SiloRouter.sol
silo-core/contracts/silo-router/SiloRouterImplementation.sol

The team performed a manual audit of all the smart contracts. During the manual audit, the Certora team
discovered bugs in the code, as listed on the following page.

Protocol Overview

Silo Router is a utility contract that aims to improve UX. It can batch any number or combination of actions
(Deposit, Withdraw, Borrow, Repay) and execute them in a single transaction.

Threat model

The SiloRouter and SiloRouterImplementation contract are UX utilities. While the user can interact
with the protocol either through the Router or directly with the Silo Vaults, the level of risk for these present
contracts is expected to be fairly low. Indeed, these contracts aren’t expected to hold any funds, and the users
are expected to not leave left-over funders. Users aren’t expected to interact with the Router outside of the
official UI for the suggested flows. Additionally, the important protections already exist at the Silo Vault.

 3

https://github.com/silo-finance/silo-contracts-v2/tree/feature/silo-router-for-all
https://github.com/silo-finance/silo-contracts-v2/tree/feature/silo-router-for-all
https://github.com/silo-finance/silo-contracts-v2/pull/961/commits/69998658a6b3e5f2e728ed7314607820eb379e27

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Acknowledged Confirmed Fixed

Critical - - - -

High - - - -

Medium - - - -

Low - - - -

Informational 5 4 1 1

Total 5 4 1 1

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

 4

Informational Severity Issues

I-01 Type Confusion: withdraw Returns Shares, Not Assets

Severity: Informational Impact: N/A Likelihood: N/A

Files:
SiloRouterImplementation.sol

Status: Fixed

Description:

● The function _silo.withdraw returns shares, but the router treats it as assets, which
may lead to logic errors.

● This issue exists at SiloRouterImplementationFlat.sol#L2155-L2162

File: SiloRouterImplementationFlat.sol
2155: function withdraw(
2156: ISilo _silo,
2157: uint256 _amount,
2158: address _receiver,
2159: ISilo.CollateralType _collateral
2160:) external payable virtual returns (uint256 assets) {
2161: assets = _silo.withdraw(_amount, _receiver, msg.sender,
_collateral); //@audit-issue this returns shares, not assets
2162: }

As proof, see the interface:
● https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968

c00d2a916a35/silo-core/contracts/interfaces/ISilo.sol#L298-L300

File: ISilo.sol
298: function withdraw(uint256 _assets, address _receiver, address _owner,
CollateralType _collateralType)
299: external
300: returns (uint256 shares);

And see the function itself:

 5

https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968c00d2a916a35/SiloRouterImplementationFlat.sol#L2155-L2162
https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968c00d2a916a35/silo-core/contracts/interfaces/ISilo.sol#L298-L300
https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968c00d2a916a35/silo-core/contracts/interfaces/ISilo.sol#L298-L300

● https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968
c00d2a916a35/silo-core/contracts/Silo.sol#L230

File: Silo.sol
230: function withdraw(uint256 _assets, address _receiver, address _owner)
231: external
232: virtual
233: returns (uint256 shares)

Recommendation:
To gain clarity, change _amount -> _assets and assets -> shares

File: SiloRouterImplementationFlat.sol
2155: function withdraw(
2156: ISilo _silo,
- 2157: uint256 _amount,
+ 2157: uint256 _assets,
2158: address _receiver,
2159: ISilo.CollateralType _collateral
- 2160:) external payable virtual returns (uint256 assets) {
+ 2160:) external payable virtual returns (uint256 shares) {
- 2161: assets = _silo.withdraw(_amount, _receiver, msg.sender,
_collateral);
+ 2161: shares = _silo.withdraw(_assets, _receiver, msg.sender,
_collateral);
2162: }

Alternatively, if what was meant was a redeem() instead of a withdraw, consider changing the
function's name

Note: withdrawAll is fine as it actually calls redeem. However, to avoid any confusion, it'd be
great to actually call it redeemAll instead

Silo’s Response: Fixed, variable is renamed for clarity.

Certora’s Response: Fix is confirmed at commit 584ef754

 6

https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968c00d2a916a35/silo-core/contracts/Silo.sol#L230
https://github.com/silo-finance/silo-contracts-v2/blob/3b4c23ca8872e90f29ffadb84968c00d2a916a35/silo-core/contracts/Silo.sol#L230
https://github.com/silo-finance/silo-contracts-v2/commit/584ef75448a05322151f5df3222e540aa7e6fbe2

I-02 sendValueAll/transferAll shouldn't be up to the user to call

Severity: Informational Impact: N/A Likelihood: N/A

Files:
SiloRouterImplementation.sol

Status: Acknowledged
(Design Choice)

Description:
● The router relies on users to call sendValueAll/transferAll correctly, but missing these

calls can lead to loss of funds.
● Bots can sweep leftover funds if the user fails to execute all required actions in a single

transaction.

Recommendation:

● The router UX should automatically append sendValueAll/transferAll for all assets
withdrawn to the contract.

● Add clear comments in the code to ensure this behavior is enforced.

Silo’s Response: UX will pack all necessary actions for the user. SiloRouter is an UI tool, it should
not be used outside protocol website to avoid actions misconfiguration. Invalid sequence of
actions may cause the loss of funds (even in ERC-20 tokens). This is a design choice.

Certora’s Response: Acknowledged.

 7

I-03 DOS or Leftover Funds Due to Fixed Amounts in unwrap/transfer/sendValue

Severity: Informational Impact: N/A Likelihood: N/A

Files:
SiloRouterImplementation.sol

Status: Acknowledged
(Design Choice)

Description:

● The withdraw -> unwrap -> sendValue sequence requires knowing shares in advance,
but shares fluctuate due to on-chain conditions.

● Failure to handle fluctuations correctly can result in stuck funds (which bots may steal) or
transaction reverts.

● Attackers can manipulate exchange rates via frontrunning to cause failure.

Recommendation:
● Use unwrapAll, sendValueAll, and transferAll to avoid stuck funds.

Reference: EIP-4626 Security Considerations

The methods totalAssets, convertToShares and convertToAssets are estimates useful for
display purposes, and do not have to confer the exact amount of underlying assets their
context suggests.

The preview methods return values that are as close as possible to exact as possible. For that
reason, they are manipulable by altering the on-chain conditions and are not always safe to
be used as price oracles. This specification includes convert methods that are allowed to be
inexact and > therefore can be implemented as robust price oracles. For example, it would be
correct to implement the convert methods as using a time-weighted average price in
converting between assets and shares.

Integrators of EIP-4626 Vaults should be aware of the difference between these view
methods when integrating with this standard. Additionally, note that the amount of underlying
assets a user may receive from redeeming their Vault shares (previewRedeem) can be

 8

https://eips.ethereum.org/EIPS/eip-4626#security-considerations

significantly different than the amount that would be taken from them when minting the
same quantity of shares (previewMint). The differences may be small (like if due to rounding
error), or very significant (like if a Vault implements withdrawal or deposit fees, etc). Therefore
integrators should always take care to use the preview function most relevant to their use
case, and never assume they are interchangeable.

Silo’s Response: Design choice. There must be no left-overs on a router contract after user's
transaction by design. To get all left-overs, users must execute transferAll, unwrapAll,
sendValueAll actions.
User's transaction may revert if the sequence of actions is invalid in the system (for example, an
attempt to withdraw non-existing collateral). Comments in SiloRouterImplementation.sol advise
the preferred ways to interact with SiloRouter.

Certora’s Response: Acknowledged.

 9

I-04 No Slippage Protection

Severity: Informational Impact: N/A Likelihood: N/A

Files:
SiloRouterImplementation.sol

Status: Acknowledged

Description:

● EIP-4626 warns against direct EOA deposits/withdrawals without slippage protection.
● Transactions without slippage limits could suffer losses due to price changes.
● A deadline should also be set to prevent execution delays affecting outcomes.

Recommendation:

● Add a function that allows users to set slippage tolerance on deposits/withdrawals.
● Implement transaction deadlines.

Reference: EIP-4626 Security Considerations

If implementors intend to support EOA account access directly, they should consider adding
an additional function call for deposit/mint/withdraw/redeem with the means to
accommodate slippage loss or unexpected deposit/withdrawal limits, since they have no
other means to revert the transaction if the exact output amount is not achieved.

Silo’s Response: No impact. Share-to-assets ratio can be changed only with interest rate which
is limited to 10k% APR (<0.0004% / second in the worst case scenario). Silo has a protection from
the first depositor and other ERC4626 specific attacks to inflate the rates. We don’t expect the
lending markets to have slippage.

Certora’s Response: Acknowledged.

 10

https://eips.ethereum.org/EIPS/eip-4626#security-considerations

I-05 sendValueAll/transferAll shouldn't be up to the user to call

Severity: Informational Impact: N/A Likelihood: N/A

Files:
SiloRouterImplementation.sol

Status: Acknowledged

Description:

● Today, wrapped native tokens (e.g., WETH) are always 1:1 with the native currency, but this
might not hold true for future implementations.

● Example: Base L2’s native ETH is yield-bearing, meaning we could think of yield-bearing
tokens like Base's ETH, which might shift away from a 1:1 ratio if yield distribution is
introduced. , then the scenarios involving wrap/unwrap could be wrong (anapproveAll()
method would be needed here).

Recommendation:
● Future-proof the router by considering scenarios where wrap/unwrap is not strictly 1:1.

Silo’s Response: Acknowledged but we consider this an impossible likelihood.

Certora’s Response: Acknowledged.

 11

Dismissed Concerns

Repayments Paused While Liquidations Enabled

On the Router, there's a Pauseable system. However, no other pause mechanisms were seen in
the protocol. This means that, a state where repayments are paused but liquidations are enabled
is possible, which is highly unfair.
Granted, users could directly call the Silo Vault to repay: but does the UI account for that or do
users need to be tech-savvy?
Either the Pauseable system should be more granular, or there should be a sync to pause
liquidations in the meantime. However, even if those are sync'd, given the competitive nature of
liquidations (using Bots), the average users would get immediately liquidated once the Silo
Router gets unpaused.

Silo's Response: "Rejected. It is a safety feature to pause a particular router contract, not the
entire protocol. Pausing helps to migrate from the old router contract and abandon user's
approvals during migration to the new router contract.
Other protocol contracts will keep working, repayments can be done by interacting with Silo
contract directly."

 12

Easily Bypassable Pause Mechanism

If an attacker deploys their own copy-pasted SiloRouter, they will still be able to interact with
the protocol while other users would be blocked.
Even without the SiloRouter, it's also very possible to interact with the Silo Vaults directly. This
raises the question: why is there a pause mechanism in place? It can make sense if an issue is
found on the Silo Router itself, but not on Silo (which is directly accessible). Tech-savvy users
aren't effectively protected/paused. This here is as effective as deactivating a button in the
frontend (which would cost less gas thanks to not having to read the paused state variable). So:
shouldn't the Pause Mechanism here only be on the front-end? (greying-out a button?)

As an additional note: the reentrancy guard can also be bypassed by an attacker deploying their
own Silo Router, simply by not putting up a ReentrancyGuard. Therefore, this is probably also only
consuming additional gas.

Silo's Response: "Rejected. Router is an UI utility contract to simplify complicated interactions
with the protocol. Pausing is a safety feature to abandon user's approvals when we migrate to the
new version.
When paused, all router actions can be done in Silo contract directly, it is intended."

 13

Repayment/deposits will revert with Fee-On-Transfer tokens

Some tokens take a transfer fee (e.g. STA, PAXG), some do not currently charge a fee but may do
so in the future (e.g. USDT, USDC).

The following logic, after transferFrom, may actually retain a balance of token that is less than
repayAmount in the contract, meaning that the approval would approve more tokens than the
contract's balance, and the call to repay would revert due to trying to move more funds than the
Router's actual balance.

File: SiloRouterImplementation.sol
178: function repayAll(ISilo _silo) external payable virtual returns
(uint256 shares) {
179: uint256 repayAmount = _silo.maxRepay(msg.sender);
180: IERC20 asset = IERC20(_silo.asset());
181:
182: transferFrom(asset, address(this), repayAmount);
183: approve(asset, address(_silo), repayAmount);
184:
185: shares = repay(_silo, repayAmount);
186: }

This is also a problem in the flow of deposit token using SiloRouter.multicall:

File: SiloRouterImplementation.sol
18: - deposit token using SiloRouter.multicall
19: SiloRouter.transferFrom(IERC20 _token, address _to, uint256 _amount)
20: SiloRouter.approve(IERC20 _token, address _spender, uint256 _amount)
21: SiloRouter.deposit(ISilo _silo, uint256 _amount)

Remediation:

It'd be great to have an approveAll function that would use the actual balance of the contract
and return it, so we can know how much to repay. A depositAll function would also be relevant
in this scenario

Silo's Response: Rejected. Silo protocol does not support fee-on-transfer tokens.

 14

Repayment could be made to revert

When repayments are over-repaid: the transaction reverts. If the repayment is close to the limit,
say leaving 10% in, an attacker could frontrun the multicall by directly repaying on the Silo Vault
on behalf of the target user, for about 11%. While economically expensive, this is still an open
vector that could be exploited and might even be profitable for an attacker griefing a
competitor's multicall.
An easy fix would be to add an upperbound to the repayment by checking
_silo.maxRepay(msg.sender) and only repaying up to the maximum repay amount, and not
possibly more.

Silo's Response: Rejected. To repay all users must use the repayAll function.

No direct mint/redeem: is that a design decision?

We have a deposit and a withdraw (which both takes assets as input and output shares).
Besides the redeem on all shares: there isn't a way to specify the number of shares to redeem or
to mint. Was that forgotten or on purpose? (design decision?)

Silo's Response: Rejected. It is a design choice. UX requirements do not contain this feature.
SiloRouter is a minimalistic contract for the UI purpose.

Owner can renounce while system is paused

The contract owner is not prevented from renouncing the ownership while the contract is
paused.

Silo's Response: Rejected. It is a feature to abandon old SiloRouter contract to migrate for a new
version. Owner will pause contract and renounce ownership to prevent it to become live ever
again in the future.

 15

Formal Verification
Verification Notations

Formally Verified
The rule is verified for every state of the
contract(s), under the assumptions of the
scope/requirements in the rule.

Formally Verified After Fix
The rule was violated due to an issue in the
code and was successfully verified after
fixing the issue

Violated
A counter-example exists that violates one
of the assertions of the rule.

 16

Formal Verification Properties

SiloRouter

 17

P-01. Integrity of pausing and ownership

Status: Verified

Rule Name Status Description Link to rule report

consistencyOfPausing Verified After calling pause(), all calls to multicall() will
revert.

Run link

onlyOwnerCanPause Verified pause() must revert if the caller is not the owner. Run link

onlyOwnerCanUnpause Verified unpause() must revert if the caller is not the owner. Run link

https://prover.certora.com/output/6893/704edac30827453b856cef1dd619a87d?anonymousKey=77c1c8df186e1648bbd3585ef2288d887a6c6191
https://prover.certora.com/output/6893/704edac30827453b856cef1dd619a87d?anonymousKey=77c1c8df186e1648bbd3585ef2288d887a6c6191
https://prover.certora.com/output/6893/704edac30827453b856cef1dd619a87d?anonymousKey=77c1c8df186e1648bbd3585ef2288d887a6c6191

SiloRouterImplementation

Module General Assumptions

We assume that the Silo contract works correctly. These rules prove that methods on
SiloRouterImplementation pass their arguments correctly to methods on Silo, i.e. that specified
properties of SIlo apply to SiloRouterImplementation as well.

Module Properties

 18

P-02. Methods’ inverses

Status: Verified

Rule Name Status Description Link to rule report

depositWithdrawInverse Verified Calling deposit(); withdraw(); has no effect. Run link

borrowRepayInverse Verified Calling borrow(); repay(); has no effect. Run link

P-03. Methods don’t affect others

Status: Verified

Rule Name Status Description Link to rule report

borrowDoesntAffectOthers Verified borrow() doesn’t affect balances of
unrelated users.

Run link

depositDoesntAffectOthers Verified deposit() doesn’t affect balances of
unrelated users.

Run link

https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e
https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e
https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e
https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e

 19

repayDoesntAffectOthers Verified repay() doesn’t affect balances of unrelated
users.

Run link

withdrawDoesntAffectOthers Verified withdraw() doesn’t affect balances of
unrelated users.

Run link

https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e
https://prover.certora.com/output/6893/1bdee99e4c0048309da93a63bb6a1ac4?anonymousKey=79ab48af5411addbb9d24f4ebb200f4bc1a2a79e

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

 20

	
	Security Assessment
	Final Report
	
	
	Project Summary
	Project Scope
	Project Overview
	Protocol Overview
	Threat model

	
	Findings Summary
	Severity Matrix
	
	Informational Severity Issues
	I-01 Type Confusion: withdraw Returns Shares, Not Assets
	
	I-02 sendValueAll/transferAll shouldn't be up to the user to call
	I-03 DOS or Leftover Funds Due to Fixed Amounts in unwrap/transfer/sendValue
	
	I-04 No Slippage Protection
	I-05 sendValueAll/transferAll shouldn't be up to the user to call
	
	Dismissed Concerns
	Repayments Paused While Liquidations Enabled
	
	Easily Bypassable Pause Mechanism
	
	Repayment/deposits will revert with Fee-On-Transfer tokens
	Repayment could be made to revert
	No direct mint/redeem: is that a design decision?
	Owner can renounce while system is paused

	Formal Verification
	Verification Notations
	Formal Verification Properties
	SiloRouter
	P-01. Integrity of pausing and ownership
	
	
	
	
	SiloRouterImplementation
	Module General Assumptions
	P-02. Methods’ inverses
	P-03. Methods don’t affect others

	
	Disclaimer
	
	About Certora

